Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes Dev ; 34(21-22): 1520-1533, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060134

RESUMEN

DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.


Asunto(s)
ADN Primasa/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , ADN Primasa/química , ADN Primasa/deficiencia , Enanismo/diagnóstico por imagen , Enanismo/patología , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/patología , Variación Genética , Humanos , Lactante , Masculino , Linaje , Síndrome
2.
Cell ; 149(5): 1008-22, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22579044

RESUMEN

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Asunto(s)
Replicación del ADN , Embrión de Mamíferos/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Animales , Inestabilidad Cromosómica , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Genes Dev ; 30(19): 2158-2172, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737959

RESUMEN

Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Microcefalia/genética , Mitosis/genética , Complejos Multiproteicos/genética , Mutación/genética , Aneuploidia , Animales , Catenanos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inestabilidad Cromosómica/genética , Segregación Cromosómica/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Micronúcleos con Defecto Cromosómico , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre
4.
Nature ; 548(7668): 461-465, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738408

RESUMEN

DNA is strictly compartmentalized within the nucleus to prevent autoimmunity; despite this, cyclic GMP-AMP synthase (cGAS), a cytosolic sensor of double-stranded DNA, is activated in autoinflammatory disorders and by DNA damage. Precisely how cellular DNA gains access to the cytoplasm remains to be determined. Here, we report that cGAS localizes to micronuclei arising from genome instability in a mouse model of monogenic autoinflammation, after exogenous DNA damage and spontaneously in human cancer cells. Such micronuclei occur after mis-segregation of DNA during cell division and consist of chromatin surrounded by its own nuclear membrane. Breakdown of the micronuclear envelope, a process associated with chromothripsis, leads to rapid accumulation of cGAS, providing a mechanism by which self-DNA becomes exposed to the cytosol. cGAS is activated by chromatin, and consistent with a mitotic origin, micronuclei formation and the proinflammatory response following DNA damage are cell-cycle dependent. By combining live-cell laser microdissection with single cell transcriptomics, we establish that interferon-stimulated gene expression is induced in micronucleated cells. We therefore conclude that micronuclei represent an important source of immunostimulatory DNA. As micronuclei formed from lagging chromosomes also activate this pathway, recognition of micronuclei by cGAS may act as a cell-intrinsic immune surveillance mechanism that detects a range of neoplasia-inducing processes.


Asunto(s)
Inestabilidad Genómica/inmunología , Inmunidad Innata/genética , Micronúcleos con Defecto Cromosómico , Nucleotidiltransferasas/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Cromatina/metabolismo , Cromotripsis , Citoplasma/enzimología , Citoplasma/genética , ADN/metabolismo , Daño del ADN , Femenino , Inestabilidad Genómica/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Rayos Láser , Masculino , Ratones , Microdisección , Mitosis , Membrana Nuclear/metabolismo , Nucleotidiltransferasas/genética , Análisis de la Célula Individual , Transcriptoma
6.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057030

RESUMEN

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

8.
EMBO J ; 33(6): 542-58, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514026

RESUMEN

The sensing of nucleic acids by receptors of the innate immune system is a key component of antimicrobial immunity. RNA:DNA hybrids, as essential intracellular replication intermediates generated during infection, could therefore represent a class of previously uncharacterised pathogen-associated molecular patterns sensed by pattern recognition receptors. Here we establish that RNA:DNA hybrids containing viral-derived sequences efficiently induce pro-inflammatory cytokine and antiviral type I interferon production in dendritic cells. We demonstrate that MyD88-dependent signalling is essential for this cytokine response and identify TLR9 as a specific sensor of RNA:DNA hybrids. Hybrids therefore represent a novel molecular pattern sensed by the innate immune system and so could play an important role in host response to viruses and the pathogenesis of autoimmune disease.


Asunto(s)
Células Dendríticas/metabolismo , Inmunidad Innata/inmunología , Modelos Inmunológicos , Ácidos Nucleicos Heterodúplex/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Western Blotting , Células Dendríticas/inmunología , Endosomas , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Polarización de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/inmunología , Ácidos Nucleicos Heterodúplex/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 9/inmunología
9.
Am J Hum Genet ; 96(3): 412-24, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25728776

RESUMEN

Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.


Asunto(s)
Proteínas de Unión al ADN/genética , Enanismo Hipofisario/genética , Enanismo/genética , Microcefalia/genética , Mutación , Alelos , Secuencia de Aminoácidos , Niño , Preescolar , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Campo Pulsado , Exoma , Facies , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Fenotipo , Conformación Proteica , Inmunodeficiencia Combinada Grave/genética
11.
Nat Genet ; 38(8): 917-20, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845398

RESUMEN

Aicardi-Goutières syndrome (AGS) presents as a severe neurological brain disease and is a genetic mimic of the sequelae of transplacentally acquired viral infection. Evidence exists for a perturbation of innate immunity as a primary pathogenic event in the disease phenotype. Here, we show that TREX1, encoding the major mammalian 3' --> 5' DNA exonuclease, is the AGS1 gene, and AGS-causing mutations result in abrogation of TREX1 enzyme activity. Similar loss of function in the Trex1(-/-) mouse leads to an inflammatory phenotype. Our findings suggest an unanticipated role for TREX1 in processing or clearing anomalous DNA structures, failure of which results in the triggering of an abnormal innate immune response.


Asunto(s)
Exodesoxirribonucleasas/genética , Trastornos Heredodegenerativos del Sistema Nervioso/enzimología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Mutación , Fosfoproteínas/genética , Proteínas/genética , Animales , Secuencia de Bases , ADN/genética , Exodesoxirribonucleasas/deficiencia , Trastornos Heredodegenerativos del Sistema Nervioso/inmunología , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosfoproteínas/deficiencia , Síndrome
12.
Nat Genet ; 38(8): 910-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845400

RESUMEN

Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/enzimología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Ribonucleasa H/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN/genética , Encefalitis Viral/congénito , Femenino , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Síndrome
13.
Hum Mutat ; 34(8): 1066-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23592335

RESUMEN

Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Mutación Puntual , Sitios de Empalme de ARN , Ribonucleasa H/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/enzimología , Ribonucleasa H/metabolismo
14.
J Biol Chem ; 286(24): 21393-400, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21515671

RESUMEN

Primary microcephaly is an autosomal recessive disorder characterized by marked reduction in human brain size. Microcephalin (MCPH1), one of the genes mutated in primary microcephaly, plays an important role in DNA damage checkpoint control and mitotic entry. Additionally, MCPH1 ensures the proper temporal activation of chromosome condensation during mitosis, by acting as a negative regulator of the condensin II complex. We previously found that deletion of the of the MCPH1 N terminus leads to the premature chromosome condensation (PCC) phenotype. In the present study, we unexpectedly observed that a truncated form of MCPH1 appears to be expressed in MCPH1(S25X/S25X) patient cells. This likely results from utilization of an alternative translational start codon, which would produce a mutant MCPH1 protein with a small deletion of its N-terminal BRCT domain. Furthermore, missense mutations in the MCPH1 cluster at its N terminus, suggesting that intact function of this BRCT protein-interaction domain is required both for coordinating chromosome condensation and human brain development. Subsequently, we identified the SET nuclear oncogene as a direct binding partner of the MCPH1 N-terminal BRCT domain. Cells with SET knockdown exhibited abnormal condensed chromosomes similar to those observed in MCPH1-deficient mouse embryonic fibroblasts. Condensin II knockdown rescued the abnormal chromosome condensation phenotype in SET-depleted cells. In addition, MCPH1 V50G/I51V missense mutations, impair binding to SET and fail to fully rescue the abnormal chromosome condensation phenotype in Mcph1(-/-) mouse embryonic fibroblasts. Collectively, our findings suggest that SET is an important regulator of chromosome condensation/decondensation and that disruption of the MCPH1-SET interaction might be important for the pathogenesis of primary microcephaly.


Asunto(s)
Cromosomas/metabolismo , Regulación de la Expresión Génica , Chaperonas de Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Codón Iniciador , Proteínas del Citoesqueleto , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Fibroblastos/metabolismo , Humanos , Ratones , Mutación , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo
15.
Bioessays ; 30(9): 833-42, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18693262

RESUMEN

Enzymes that degrade nucleic acids are emerging as important players in the pathogenesis of inflammatory disease. This is exemplified by the recent identification of four genes that cause the childhood inflammatory disorder, Aicardi-Goutières syndrome (AGS). This is an autosomal recessive neurological condition whose clinical and immunological features parallel those of congenital viral infection. The four AGS genes encode two nucleases: TREX1 and the hetero-trimeric Ribonuclease H2 (RNase H2) complex. The biochemical activity of these enzymes was initially characterised 30 years ago but a role in neurological inflammation was entirely unanticipated until they were found to be mutated in AGS. This has led to a hypothesis that accumulation of intracellular nucleic acids occurs as a consequence of mutation in these enzymes and triggers an inflammatory response through activation of innate immune pattern recognition receptors.


Asunto(s)
Inmunidad Innata/fisiología , Inflamación/metabolismo , Ácidos Nucleicos/inmunología , Autoinmunidad/genética , Encéfalo/patología , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Inflamación/genética , Mutación , Ácidos Nucleicos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Síndrome
16.
J Clin Invest ; 114(5): 619-22, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15343379

RESUMEN

Signal transducer and activator of transcription 3 (Stat3) is a transcription factor that is constitutively activated in a variety of human malignancies, including prostate, lung, brain, breast, and squamous cell carcinomas. Inhibition of activated Stat3 leads to decreased proliferation and apoptosis of many cancer-derived cell lines, while the introduction of a constitutively activated form of Stat3 into immortalized human breast epithelial cells and rodent fibroblasts results in cellular transformation. Collectively, these data suggest a role for Stat3 in oncogenesis. A new study from Chan et al. is the first to demonstrate a requirement for Stat3 in de novo epithelial carcinogenesis in vivo. Using the two-step model of chemically induced skin carcinogenesis, the authors demonstrated that mice deficient in Stat3 were completely resistant to skin tumor development.


Asunto(s)
Apoptosis/fisiología , Proteínas de Unión al ADN/metabolismo , Neoplasias Cutáneas/etiología , Piel/metabolismo , Transactivadores/metabolismo , Animales , Humanos , Ratones , Factor de Transcripción STAT3 , Piel/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
17.
Nat Genet ; 49(4): 537-549, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28191891

RESUMEN

To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Enanismo/genética , Inestabilidad Genómica/genética , Microcefalia/genética , Mutación/genética , Línea Celular , Daño del ADN/genética , Femenino , Humanos , Masculino
18.
Cancer Res ; 62(22): 6615-20, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12438257

RESUMEN

In recent years, a number of proteins have been identified that can modify the activities of the Wilms' Tumor 1 (WT1) proteins. One of these modifiers is the p53 protein. To investigate a genetic interaction between the p53 gene and the wt1 gene, we have crossed their respective knockout mice. The absence of p53 appears to have no gross effect on the phenotype of wt1-null mice. Both wt1-null and double-null embryos develop pericardial bleeding and die in utero. In adult p53-null mice, wt1-heterozygosity (wt1het) predisposes to an earlier onset of lymphomagenesis and the development of kidney abnormalities resembling oncocytoma in humans. wt1-heterozygosity alone predisposes to the development of glomerular sclerosis.


Asunto(s)
Genes del Tumor de Wilms/fisiología , Genes p53/genética , Proteínas WT1/genética , Adenoma Oxifílico/genética , Animales , Femenino , Glomérulos Renales/patología , Linfoma/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis/genética , Neoplasias del Timo/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas WT1/deficiencia
19.
Nat Genet ; 48(1): 36-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595769

RESUMEN

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.


Asunto(s)
Daño del ADN , Enanismo/genética , Mutación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proliferación Celular/genética , Preescolar , Daño del ADN/efectos de la radiación , Facies , Histonas/genética , Histonas/metabolismo , Humanos , Microcefalia/genética , Datos de Secuencia Molecular , Fosforilación , Proteína de Replicación A/metabolismo , Fase S/efectos de la radiación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta
20.
Oncogene ; 21(41): 6299-306, 2002 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-12214270

RESUMEN

In colorectal tumorigenesis, loss of function of the mismatch repair genes is closely associated with genomic instability at the nucleotide level whereas p53 deficiency has been linked with gross chromosomal instability. We have addressed the contribution of these two forms of genetic instability to tumorigenesis using mice mutant for Msh2 and p53. As previously reported, deficiency of both genes leads to rapid lymphomagenesis Here we show that heterozygosity for p53 also markedly reduces survival on an Msh2 null background. We characterized the patterns of genomic instability in a small set of tumours and showed that, as predicted p53 deficiency predisposes to aneuploidy and Msh2 deficiency leads to microsatellite instability (MSI). However, heterozygosity for p53 in the absence of Msh2 resulted in increased MSI and not aneuploidy. This implied role for p53 in modulating MSI was confirmed using a large cohort of primary fibroblast clones. The differences observed were highly significant (P<0.01) in both the fibroblast clones (which all retained p53 functionality) and the tumours, a proportion of which retained p53 functionality. Our results therefore demonstrate a dose sensitive role for p53 in the maintenance of genomic integrity at the nucleotide level.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Genes p53 , Repeticiones de Microsatélite/genética , Proteínas Proto-Oncogénicas/genética , Animales , Disparidad de Par Base , Regulación Neoplásica de la Expresión Génica , Heterocigoto , Ratones , Proteína 2 Homóloga a MutS , Neoplasias Experimentales/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA