Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carbohydr Polym ; 336: 122134, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670761

RESUMEN

In our research we used the anionic nanofibrillar cellulose (ANFC) as a platform for far-red light-induced release of cargo from liposomes. In contrast to previous works, where photosensitizers are usually in the liposomal bilayers, we used a cellulose-binding dye. Our phthalocyanine derivative has been shown to bind very strongly to cellulose and cellulose nanofiber hydrogels, allowing us to place it outside of the liposomes. Both the sensitizer and cationic liposomes bind strongly to the ANFC after mixing, making the system easy to fabricate. Upon light activation, the photosensitizer generates reactive oxygen species (ROS) within the ANFC hydrogel, where the reactive oxygen species oxidize unsaturated lipids in the liposomal membrane, which makes the liposomes more permeable, resulting in on-demand cargo release. We were able to achieve ca. 70 % release of model hydrophilic cargo molecule calcein from the hydrogels with a relatively low dose of light (262 J/cm2) while employing the straightforward fabrication techniques. Our system was remarkably responsive to the far-red light (730 nm), enabling deep tissue penetration. Therefore, this very promising novel cellulose-immobilized photosensitizer liposomal platform could be used as a controlled drug delivery system, which can have applications in externally activated coatings or implants.


Asunto(s)
Celulosa , Hidrogeles , Luz , Liposomas , Nanofibras , Fármacos Fotosensibilizantes , Liposomas/química , Celulosa/química , Fármacos Fotosensibilizantes/química , Hidrogeles/química , Nanofibras/química , Especies Reactivas de Oxígeno/metabolismo , Isoindoles , Liberación de Fármacos , Fluoresceínas/química , Indoles/química , Luz Roja
2.
RSC Adv ; 11(9): 5008-5018, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424449

RESUMEN

In this study, novel green nano-zerovalent iron (G-NZVI) is synthesized for the first time using onion peel extract for the prevention of rapid surface oxidation and the enhancement of particle dispersibility with a high reductive capacity. The results from various surface analyses revealed that the spherical shape of G-NZVI was fully covered by the onion peel extract composed of polyphenolic compounds with C[double bond, length as m-dash]C-C[double bond, length as m-dash]C unsaturated carbon, C[double bond, length as m-dash]C, C-O, and O-H bonds, resulting in high mobility during column chromatography. Furthermore, the obtained G-NZVI showed the complete removal of 50 mg L-1 of bromate (BrO3 -) in 2 min under both aerobic (k = 4.42 min-1) and anaerobic conditions (k = 4.50 min-1), showing that G-NZVI had outstanding oxidation resistance compared to that of bare NZVI. Moreover, the observed performance of G-NZVI showed that it was much more reactive than other well-known reductants (e.g., Fe and Co metal organic frameworks), regardless of whether aerobic or anaerobic conditions were used. The effects of G-NZVI loading, the BrO3 - concentration, and pH on the BrO3 - removal kinetics using G-NZVI were also investigated in this study. The results provide the novel insight that organic onion peel waste can be reused to synthesize highly reactive anti-oxidative nanoparticles for the treatment of inorganic chemical species and heavy metals in water and wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA