Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915268

RESUMEN

Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.

2.
Clin Neurophysiol ; 164: 47-56, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848666

RESUMEN

OBJECTIVE: Drowsiness has been implicated in the modulation of centro-temporal spikes (CTS) in Self-limited epilepsy with Centro-Temporal Spikes (SeLECTS). Here, we explore this relationship and whether fluctuations in wakefulness influence the brain networks involved in CTS generation. METHODS: Functional MRI (fMRI) and electroencephalography (EEG) was simultaneously acquired in 25 SeLECTS. A multispectral EEG index quantified drowsiness ('EWI': EEG Wakefulness Index). EEG (Pearson Correlation, Cross Correlation, Trend Estimation, Granger Causality) and fMRI (PPI: psychophysiological interactions) analytic approaches were adopted to explore respectively: (a) the relationship between EWI and changes in CTS frequency and (b) the functional connectivity of the networks involved in CTS generation and wakefulness oscillations. EEG analyses were repeated on a sample of routine EEG from the same patient's cohort. RESULTS: No correlation was found between EWI fluctuations and CTS density during the EEG-fMRI recordings, while they showed an anticorrelated trend when drowsiness was followed by proper sleep in routine EEG traces. According to PPI findings, EWI fluctuations modulate the connectivity between the brain networks engaged by CTS and the left frontal operculum. CONCLUSIONS: While CTS frequency per se seems unrelated to drowsiness, wakefulness oscillations modulate the connectivity between CTS generators and key regions of the language circuitry, a cognitive function often impaired in SeLECTS. SIGNIFICANCE: This work advances our understanding of (a) interaction between CTS occurrence and vigilance fluctuations and (b) possible mechanisms responsible for language disruption in SeLECTS.


Asunto(s)
Encéfalo , Electroencefalografía , Imagen por Resonancia Magnética , Red Nerviosa , Vigilia , Humanos , Vigilia/fisiología , Masculino , Femenino , Electroencefalografía/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente , Adulto , Epilepsia Rolándica/fisiopatología , Fases del Sueño/fisiología , Adulto Joven , Niño
3.
Bioengineering (Basel) ; 11(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534498

RESUMEN

There are considerable gaps in our understanding of the relationship between human brain activity measured at different temporal and spatial scales. Here, electrocorticography (ECoG) measures were used to predict functional MRI changes in the sensorimotor cortex in two brain states: at rest and during motor performance. The specificity of this relationship to spatial co-localisation of the two signals was also investigated. We acquired simultaneous ECoG-fMRI in the sensorimotor cortex of three patients with epilepsy. During motor activity, high gamma power was the only frequency band where the electrophysiological response was co-localised with fMRI measures across all subjects. The best model of fMRI changes across states was its principal components, a parsimonious description of the entire ECoG spectrogram. This model performed much better than any others that were based either on the classical frequency bands or on summary measures of cross-spectral changes. The region-specific fMRI signal is reflected in spatially and spectrally distributed EEG activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA