Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 47(10): 2498-2501, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561384

RESUMEN

Integrated silicon nitride waveguides of 100 nm height can achieve ultralow propagation losses below 0.1 dB/cm at the 1550 nm wavelength band but lack the scattering strength to form efficient grating couplers. An enhanced grating coupler design based on an amorphous silicon layer on top of silicon nitride is proposed and demonstrated to improve the directionality of the coupler. The fabrication process is optimized for a self-alignment process between the amorphous silicon and silicon nitride layers without increasing waveguide losses. Experimental coupling losses of 5 dB and a 3 dB bandwidth of 75 nm are achieved with both regular and focusing designs.

2.
Nano Lett ; 13(7): 3237-42, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23786215

RESUMEN

Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nanoelectromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nanoelectromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.


Asunto(s)
Conductometría/instrumentación , Grafito/química , Sistemas Microelectromecánicos/instrumentación , Nanopartículas/química , Nanotecnología/instrumentación , Transductores de Presión , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas/ultraestructura , Presión
3.
Nano Lett ; 10(2): 461-5, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20058873

RESUMEN

The truly two-dimensional material graphene is an ideal candidate for nanoelectromechanics due to its large strength and mobility. Here we show that graphene flakes provide natural nanomembranes of diameter down to 3 nm within its intrinsic rippling. The membranes can be lifted either reversibly or hysteretically by the tip of a scanning tunneling microscope. The clamped-membrane model including van-der-Waals and dielectric forces explains the results quantitatively. AC-fields oscillate the membranes, which might lead to a completely novel approach to controlled quantized oscillations or single atom mass detection.


Asunto(s)
Grafito/química , Nanoestructuras/química , Nanotecnología/métodos , Dióxido de Silicio/química , Adsorción , Membranas Artificiales , Microscopía de Túnel de Rastreo/métodos , Modelos Estadísticos , Oscilometría , Electricidad Estática , Factores de Tiempo
4.
Nanotechnology ; 20(45): 455301, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19822934

RESUMEN

We report nanoscale patterning of graphene using a helium ion microscope configured for lithography. Helium ion lithography is a direct-write lithography process, comparable to conventional focused ion beam patterning, with no resist or other material contacting the sample surface. In the present application, graphene samples on Si/SiO2 substrates are cut using helium ions, with computer controlled alignment, patterning, and exposure. Once suitable beam doses are determined, sharp edge profiles and clean etching are obtained, with little evident damage or doping to the sample. This technique provides fast lithography compatible with graphene, with approximately 15 nm feature sizes.

5.
Nanoscale ; 9(25): 8573-8579, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28617497

RESUMEN

We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the detectors' spectral response in the ultraviolet (UV) region at λ = 320 nm compared to reference devices with conventional aluminum doped zinc oxide (ZnO:Al) electrodes. The maximum responsivity of the multispectral photodetectors can be tuned in their wavelength from 320 nm to 510 nm by an external bias voltage, allowing single pixel detection of UV to visible light. Graphene electrodes further enable fully flexible diodes on polyimide substrates. Here, an upgrade from single to bilayer graphene boosts the maximum photoresponsivity from 134 mA W-1 to 239 mA W-1. Interference patterns that are present in conventional TCE devices are suppressed as a result of the atomically thin graphene electrodes. The proposed detectors may be of interest in fields of UV/VIS spectroscopy or for biomedical and life science applications, where the extension to the UV range can be essential.

6.
Nanoscale ; 7(30): 13096-104, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26176739

RESUMEN

Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 10(3) A cm(-2) (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.

7.
Phys Rev Lett ; 102(7): 076102, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19257693

RESUMEN

Using scanning tunneling microscopy in an ultrahigh vacuum and atomic force microscopy, we investigate the corrugation of graphene flakes deposited by exfoliation on a Si/SiO2 (300 nm) surface. While the corrugation on SiO2 is long range with a correlation length of about 25 nm, some of the graphene monolayers exhibit an additional corrugation with a preferential wavelength of about 15 nm. A detailed analysis shows that the long-range corrugation of the substrate is also visible on graphene, but with a reduced amplitude, leading to the conclusion that the graphene is partly freely suspended between hills of the substrate. Thus, the intrinsic rippling observed previously on artificially suspended graphene can exist as well, if graphene is deposited on SiO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA