Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 160(1): 64-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33733478

RESUMEN

Stroke is a disastrous neurological disease with high morbidity and mortality. The mechanism of the pathological process is extremely complicated and unclear. Although many basic studies have confirmed molecular mechanism of brain injury after stroke, these studies have not yet translated into treatment and clinical application. Ferroptosis is a form of cell death that is distinct from necrosis, apoptosis, and autophagy morphologically and biochemically and is characterized by iron-dependent accumulation of lipid peroxides. Despite ferroptosis being first identified in cancer cells, it was recently revealed to also be a significant factor in the pathological process of stroke. A better understanding of ferroptosis in stroke may provide us with better therapeutic targets to treat this devastating disease. Here, we systematically summarized the current mechanism of ferroptosis and reviewed the current studies regarding the relationship between ferroptosis and stroke.


Asunto(s)
Ferroptosis/fisiología , Accidente Cerebrovascular/patología , Animales , Humanos
2.
Cancer Sci ; 113(8): 2681-2692, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35637600

RESUMEN

The discovery of long noncoding RNAs (lncRNAs) has improved the understanding of development and progression in various cancer subtypes. However, the role of lncRNAs in temozolomide (TMZ) resistance in glioblastoma multiforme (GBM) remains largely undefined. In this present study, the differential expression of lncRNAs was identified between U87 and U87 TMZ-resistant (TR) cells. lncRNA XLOC013218 (XLOC) was drastically upregulated in TR cells and was associated with poor prognosis in glioma. Overexpression of XLOC markedly increased TMZ resistance, promoted proliferation, and inhibited apoptosis in vitro and in vivo. In addition, RNA-seq analysis and gain-of-function or loss-of-function studies revealed that PIK3R2 was the potential target of XLOC. Mechanistically, XLOC recruited specificity protein 1 (Sp1) transcription factor and promoted the binding of Sp1 to the promoters of PIK3R2, which elevated the expression of PIK3R2 in both mRNA and protein levels. Finally, PIK3R2-mediated activation of the PI3K/AKT signaling pathway promoted TMZ resistance and cell proliferation, but inhibited cell apoptosis. In conclusion, these data highlight the vital role of the XLOC/Sp1/PIK3R2/PI3K/AKT axis in GBM TMZ resistance.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Glioma , Fosfatidilinositol 3-Quinasas , ARN Largo no Codificante , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Temozolomida/farmacología , Factores de Transcripción/genética
3.
J Neuroinflammation ; 19(1): 198, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922848

RESUMEN

BACKGROUND: Pyroptosis is a programmed cell death mediated by inflammasomes. Previous studies have reported that inhibition of neurokinin receptor 1 (NK1R) exerted neuroprotection in several neurological diseases. Herein, we have investigated the role of NK1R receptor inhibition using Aprepitant to attenuate NLRC4-dependent neuronal pyroptosis after intracerebral hemorrhage (ICH), as well as the underlying mechanism. METHODS: A total of 182 CD-1 mice were used. ICH was induced by injection of autologous blood into the right basal ganglia. Aprepitant, a selective antagonist of NK1R, was injected intraperitoneally at 1 h after ICH. To explore the underlying mechanism, NK1R agonist, GR73632, and protein kinase C delta (PKCδ) agonist, phorbol 12-myristate 13-acetate (PMA), were injected intracerebroventricularly at 1 h after ICH induction, and small interfering ribonucleic acid (siRNA) for NLRC4 was administered via intracerebroventricular injection at 48 h before ICH induction, respectively. Neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS: The expression of endogenous NK1R and NLRC 4 were gradually increased after ICH. NK1R was expressed on neurons. Aprepitant significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased neuronal pyroptosis, as well as decreased expression of NLRC4, Cleaved-caspase-1, GSDMD (gasdermin D), IL-1ß, and IL-18. Activation of NK1R or PKCδ abolished these neuroprotective effects of Aprepitant after ICH. Similarly, knocking down NLRC4 using siRNA produced similar neuroprotective effects. CONCLUSION: Aprepitant suppressed NLRC4-dependent neuronal pyroptosis and improved neurological function, possibly mediated by inhibition of NK1R/PKCδ signaling pathways after ICH. The NK1R may be a promising therapeutic target for the treatment of ICH.


Asunto(s)
Fármacos Neuroprotectores , Piroptosis , Animales , Aprepitant/uso terapéutico , Hemorragia Cerebral/metabolismo , Modelos Animales de Enfermedad , Ratones , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , ARN Interferente Pequeño/uso terapéutico
4.
Mol Biol Rep ; 49(11): 10775-10782, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35819555

RESUMEN

Subarachnoid hemorrhage (SAH) is a worldwide devastating type of stroke with high mortality and morbidity. Accumulating evidence show early brain injury (EBI) as the leading cause of mortality after SAH. The pathological processes involved in EBI include decreased cerebral blood flow, increased intracranial pressure, vasospasm, and disruption of the blood-brain barrier. In addition, neuroinflammation, oxidative stress, apoptosis, and autophagy have also been proposed to contribute to EBI. Among the various processes involved in EBI, neuronal apoptosis has been proven to be a key factor contributing to the poor prognosis of SAH patients. Meanwhile, as another important catabolic process maintaining the cellular and tissue homeostasis, autophagy has been shown to be neuroprotective after SAH. Studies have shown that enhancing autophagy reduced apoptosis, whereas inhibiting autophagy aggravate neuronal apoptosis after SAH. The physiological substrates and mechanisms of neuronal autophagy and apoptosis by which defects in neuronal function are largely unknown. In this review, we summarize and discuss the role of autophagy and apoptosis after SAH and contribute to further study for investigation of the means to control the balance between them.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Ratas , Humanos , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Encéfalo/metabolismo , Ratas Sprague-Dawley , Autofagia , Apoptosis/fisiología
5.
Cell Mol Life Sci ; 78(4): 1369-1392, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33067655

RESUMEN

The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms of different types of selective autophagy, and their implications in various forms of neurological diseases.


Asunto(s)
Autofagia/genética , Terapia Molecular Dirigida , Enfermedades del Sistema Nervioso/genética , Proteínas de Ciclo Celular/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Transporte de Membrana/genética , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/terapia , Proteínas Nucleares/genética , Proteínas Quinasas/genética , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/genética
6.
Stroke ; 52(12): 4021-4032, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719258

RESUMEN

BACKGROUND AND PURPOSE: Neuronal pyroptosis is a type of regulated cell death triggered by proinflammatory signals. CCR5 (C-C chemokine receptor 5)-mediated inflammation is involved in the pathology of various neurological diseases. This study investigated the impact of CCR5 activation on neuronal pyroptosis and the underlying mechanism involving cAMP-dependent PKA (protein kinase A)/CREB (cAMP response element binding)/NLRP1 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 1) pathway after experimental intracerebral hemorrhage (ICH). METHODS: A total of 194 adult male CD1 mice were used. ICH was induced by autologous whole blood injection. Maraviroc (MVC)-a selective antagonist of CCR5-was administered intranasally 1 hour after ICH. To elucidate the underlying mechanism, a specific CREB inhibitor, 666-15, was administered intracerebroventricularly before MVC administration in ICH mice. In a set of naive mice, rCCL5 (recombinant chemokine ligand 5) and selective PKA activator, 8-Bromo-cAMP, were administered intracerebroventricularly. Short- and long-term neurobehavioral assessments, Western blot, Fluoro-Jade C, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunofluorescence staining were performed. RESULTS: The brain expression of CCL5 (chemokine ligand 5), CCR5, PKA-Cα (protein kinase A-Cα), p-CREB (phospho-cAMP response element binding), and NLRP1 was increased, peaking at 24 hours after ICH. CCR5 was expressed on neurons, microglia, and astrocytes. MVC improved the short- and long-term neurobehavioral deficits and decreased neuronal pyroptosis in ipsilateral brain tissues at 24 hours after ICH, which were accompanied by increased PKA-Cα and p-CREB expression, and decreased expression of NLRP1, ASC (apoptosis-associated speck-like protein containing a CARD), C-caspase-1, GSDMD (gasdermin D), and IL (interleukin)-1ß/IL-18. Such effects of MVC were abolished by 666-15. At 24 hours after injection in naive mice, rCCL5 induced neurological deficits, decreased PKA-Cα and p-CREB expression in the brain, and upregulated NLRP1, ASC, C-caspase-1, N-GSDMD, and IL-1ß/IL-18 expression. Those effects of rCCL5 were reversed by 8-Bromo-cAMP. CONCLUSIONS: CCR5 activation promoted neuronal pyroptosis and neurological deficits after ICH in mice, partially through the CCR5/PKA/CREB/NLRP1 signaling pathway. CCR5 inhibition with MVC may provide a promising therapeutic approach in managing patients with ICH.


Asunto(s)
Hemorragia Cerebral/patología , Neuronas/patología , Piroptosis/fisiología , Receptores CCR5/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Hemorragia Cerebral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Transducción de Señal/fisiología
7.
J Neuroinflammation ; 18(1): 26, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468172

RESUMEN

BACKGROUND: Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of hypoxic-ischemic (HI)-induced brain injury. Activation of melanocortin-1 receptor (MC1R) has been shown to exert anti-inflammatory and neuroprotective effects in several neurological diseases. In the present study, we have explored the role of MC1R activation on neuroinflammation and the potential underlying mechanisms after neonatal hypoxic-ischemic brain injury in rats. METHODS: A total of 169 post-natal day 10 unsexed rat pups were used. HI was induced by right common carotid artery ligation followed by 2.5 h of hypoxia. BMS-470539, a specific selective MC1R agonist, was administered intranasally at 1 h after HI induction. To elucidate the potential underlying mechanism, MC1R CRISPR KO plasmid or Nurr1 CRISPR KO plasmid was administered via intracerebroventricular injection at 48 h before HI induction. Percent brain infarct area, short- and long-term neurobehavioral tests, Nissl staining, immunofluorescence staining, and Western blot were conducted. RESULTS: The expression levels of MC1R and Nurr1 increased over time post-HI. MC1R and Nurr1 were expressed on microglia at 48 h post-HI. Activation of MC1R with BMS-470539 significantly reduced the percent infarct area, brain atrophy, and inflammation, and improved short- and long-term neurological deficits at 48 h and 28 days post-HI. MC1R activation increased the expression of CD206 (a microglial M2 marker) and reduced the expression of MPO. Moreover, activation of MC1R with BMS-470539 significantly increased the expression levels of MC1R, cAMP, p-PKA, and Nurr1, while downregulating the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß) at 48 h post-HI. However, knockout of MC1R or Nurr1 by specific CRISPR reversed the neuroprotective effects of MC1R activation post-HI. CONCLUSIONS: Our study demonstrated that activation of MC1R with BMS-470539 attenuated neuroinflammation, and improved neurological deficits after neonatal hypoxic-ischemic brain injury in rats. Such anti-inflammatory and neuroprotective effects were mediated, at least in part, via the cAMP/PKA/Nurr1 signaling pathway. Therefore, MC1R activation might be a promising therapeutic target for infants with hypoxic-ischemic encephalopathy (HIE).


Asunto(s)
Encéfalo/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Imidazoles/farmacología , Receptor de Melanocortina Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Ratas , Ratas Sprague-Dawley
8.
BMC Neurosci ; 22(1): 15, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750300

RESUMEN

BACKGROUND: Rupture of intracranial aneurysm (IA) is the main cause of devastating subarachnoid hemorrhage, which urges our understanding of the pathogenesis and regulatory mechanisms of IA. However, the regulatory roles of long non-coding RNAs (lncRNAs) in IA is less known. RESULTS: We processed the raw SRR files of 12 superficial temporal artery (STA) samples and 6 IA samples to count files. Then the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs between STAs and IAs were identified. The enrichment analyses were performed using DEmRNAs. Next, a lncRNA-miRNA-mRNA regulatory network was constructed using integrated bioinformatics analysis. In summary, 341 DElncRNAs, 234 DEmiRNAs, and 2914 DEmRNAs between the STA and IA. The lncRNA-miRNA-mRNA regulatory network of IA contains 91 nodes and 146 edges. The subnetwork of hub lncRNA PVT1 was extracted. The expression level of PVT1 was positively correlated with a majority of the mRNAs in its subnetwork. Moreover, we found that several mRNAs (CCND1, HIF1A, E2F1, CDKN1A, VEGFA, COL1A1 and COL5A2) in the PVT1 subnetwork served as essential components in the PI3K-Akt signaling pathway, and that some of the non-coding RNAs (ncRNAs) (PVT1, HOTAIR, hsa-miR-17, hsa-miR-142, hsa-miR-383 and hsa-miR-193b) interacted with these mRNAs. CONCLUSION: Our annotations noting ncRNA's role in the pathway may uncover novel regulatory mechanisms of ncRNAs and mRNAs in IA. These findings provide significant insights into the lncRNA regulatory network in IA.


Asunto(s)
Aneurisma Roto , Redes Reguladoras de Genes , Aneurisma Intracraneal , ARN Largo no Codificante , Aneurisma Roto/genética , Aneurisma Roto/patología , Humanos , Aneurisma Intracraneal/genética , Aneurisma Intracraneal/patología , MicroARNs , ARN Mensajero
9.
Eur Radiol ; 31(3): 1290-1299, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32918092

RESUMEN

OBJECTIVES: The basal vein of Rosenthal (BVR) variant is a potential origin of bleeding in angiogram-negative subarachnoid hemorrhage (AN-SAH). We compared the rate and degree of BVR variants in patients with perimesencephalic AN-SAH (PAN-SAH) and non-perimesencephalic AN-SAH (NPAN-SAH). METHODS: We retrospectively reviewed the records of AN-SAH patients admitted to our hospital between 2013 and 2018. The associations between variables (baseline characteristics, clinical and radiological data, and outcome) with bleeding patterns and degree of BVR variants were analyzed. Additionally, potential predictors of positive findings on repeated digital-subtracted angiogram (DSA), rebleeding, delayed cerebral infarction (DCI), and poor outcome were further studied. RESULTS: A total of 273 patients with AN-SAH were included. The incidence rate and degree of BVR variants were significantly higher in PAN-SAH patients compared with those in NPAN-SAH patients (p < 0.001). Patients with normal bilateral BVRs are more likely to have a severe prognosis and diffused blood distribution (p < 0.05). We found an increased rate of positive findings on repeated DSA, DCI, rebleeding, and poor outcome at 3 months and 1 year after discharge (all p < 0.05) in patients with bilateral normal BVRs. Bilateral normal BVRs were considered a risk factor (predictor) of positive findings on repeated DSA, rebleeding, and poor outcome (all p < 0.05). CONCLUSIONS: PAN-SAH patients have a higher rate and degree of BVR variants compared with patients with NPAN-SAH. Those AN-SAH patients with bilateral normal BVRs are more likely to be of arterial origin and are at risk of suffering from rebleeding and a poor outcome. KEY POINTS: • Patients with PAN-SAH have a higher rate and degree of BVR variants compared with patients with NPAN-SAH, which suggested that AN-SAH patients with normal BVRs are more likely to originate from arterial bleeding. • AN-SAH patients with normal BVRs are more likely to have positive findings on repeated DSA examinations, as well as an increased incidence of rebleeding and poor outcome, which may assist and guide neurologists in selecting treatment.


Asunto(s)
Venas Cerebrales , Hemorragia Subaracnoidea , Angiografía , Angiografía Cerebral , Drenaje , Humanos , Estudios Retrospectivos , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/epidemiología
10.
J Cell Mol Med ; 24(7): 3901-3916, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32091665

RESUMEN

Using molecular signatures, previous studies have defined glioblastoma (GBM) subtypes with different phenotypes, such as the proneural (PN), neural (NL), mesenchymal (MES) and classical (CL) subtypes. However, the gene programmes underlying the phenotypes of these subtypes were less known. We applied weighted gene co-expression network analysis to establish gene modules corresponding to various subtypes. RNA-seq and immunohistochemical data were used to validate the expression of identified genes. We identified seven molecular subtype-specific modules and several candidate signature genes for different subtypes. Next, we revealed, for the first time, that radioresistant/chemoresistant gene signatures exist only in the PN subtype, as described by Verhaak et al, but do not exist in the PN subtype described by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES subtype GBMs are under ER stress and that angiogenesis and the immune inflammatory response are both significantly elevated in this subtype. The molecular basis of these biological processes was also uncovered. Genes associated with alternative RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified several survival-associated genes that positively correlated with glioma grades. The identified intrinsic characteristics of different GBM subtypes can offer a potential clue to the pathogenesis and possible therapeutic targets for various subtypes.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neovascularización Patológica/genética , Transcriptoma/genética , Neoplasias Encefálicas/patología , Estrés del Retículo Endoplásmico/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Humanos , Masculino , Mesodermo/patología , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/genética , Neovascularización Patológica/patología , Transcripción Genética/genética
11.
Stroke ; 51(11): 3320-3331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933418

RESUMEN

BACKGROUND AND PURPOSE: Neuroinflammation has been proven to play an important role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). EZH2 (enhancer of zeste homolog 2)-mediated H3K27Me3 (trimethylation of histone 3 lysine 27) has been recognized to play a critical role in multiple inflammatory diseases. However, there is still a lack of evidence to address the effect of EZH2 on the immune response of SAH. Therefore, the aim of this study was to determine the role of EZH2 in SAH-induced neuroinflammation and explore the effect of EZH2 inhibition with its specific inhibitor EPZ6438. METHODS: The endovascular perforation method was performed on rats to induce subarachnoid hemorrhage. EPZ6438, a specific EZH2 inhibitor, was administered intraperitoneally at 1 hour after SAH. SOCS3 (Suppressor of cytokine signaling 3) siRNA and H3K27me3 CRISPR were administered intracerebroventricularly at 48 hours before SAH to explore potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, immunofluorescence staining, and western blots were performed after SAH. RESULTS: The expression of EZH2 and H3K27me3 peaked at 24 hours after SAH. In addition, inhibition of EZH2 with EPZ6438 significantly improved neurological deficits both in short-term and long-term outcome studies. Moreover, EPZ6438 treatment significantly decreased the levels of EZH2, H3K27Me3, pathway-related proteins TRAF6 (TNF [tumor necrosis factor] receptor family 6), NF-κB (nuclear factor-κB) p65, proinflammatory cytokines TNF-α, IL (interleukin)-6, IL-1ß, but increased the expression levels of SOCS3 and anti-inflammatory cytokine IL-10. Furthermore, administration of SOCS3 siRNA and H3k27me3-activating CRISPR partly abolished the neuroprotective effect of EPZ6438, which indicated that the neuroprotective effect of EPZ6438 acted, at least partly, through activation of SOCS3. CONCLUSIONS: In summary, the inhibition of EZH2 by EPZ6438 attenuated neuroinflammation via H3K27me3/SOCS3/TRAF6/NF-κB signaling pathway after SAH in rats. By targeting EZH2, this study may provide an innovative method to ameliorate early brain injury after SAH.


Asunto(s)
Encéfalo/inmunología , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Histonas/metabolismo , Inflamación/inmunología , FN-kappa B/inmunología , Hemorragia Subaracnoidea/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Animales , Benzamidas/farmacología , Compuestos de Bifenilo , Encéfalo/efectos de los fármacos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Código de Histonas , Histonas/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Microglía/inmunología , Morfolinas , Prueba del Laberinto Acuático de Morris , FN-kappa B/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/inmunología , Piridonas/farmacología , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal , Hemorragia Subaracnoidea/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/efectos de los fármacos
12.
J Neuroinflammation ; 17(1): 182, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522286

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a life-threatening cerebrovascular disease. Neuroinflammation plays an important role in the pathogenesis of HIE, in which microglia are key cellular mediators in the regulation of neuroinflammatory processes. Colony-stimulating factor 1 (CSF1), a specific endogenous ligand of CSF1 receptor (CSF1R), is crucial in microglial growth, differentiation, and proliferation. Recent studies showed that the activation of CSF1R with CSF1 exerted anti-inflammatory effects in a variety of nervous system diseases. This study aimed to investigate the anti-inflammatory effects of recombinant human CSF1 (rh-CSF1) and the underlying mechanisms in a rat model of HIE. METHODS: A total of 202 10-day old Sprague Dawley rat pups were used. HI was induced by the right common carotid artery ligation with subsequent exposure of 2.5-h hypoxia. At 1 h and 24 h after HI induction, exogenous rh-CSF1 was administered intranasally. To explore the underlying mechanism, CSF1R inhibitor, BLZ945, and phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, were injected intraperitoneally at 1 h before HI induction, respectively. Brain infarct area, brain water content, neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS: The expressions of endogenous CSF1, CSF1R, PLCG2, protein kinase C epsilon type (PKCε), and cAMP response element-binding protein (CREB) were gradually increased after HIE. Rh-CSF1 significantly improved the neurological deficits at 48 h and 4 weeks after HI, which was accompanied by a reduction in the brain infarct area, brain edema, brain atrophy, and neuroinflammation. Moreover, activation of CSF1R by rh-CSF1 significantly increased the expressions of p-PLCG2, p-PKCε, and p-CREB, but inhibited the activation of neutrophil infiltration, and downregulated the expressions of IL-1ß and TNF-α. Inhibition of CSF1R and PLCG2 abolished these neuroprotective effects of rh-CSF1 after HI. CONCLUSIONS: Our findings demonstrated that the activation of CSF1R by rh-CSF1 attenuated neuroinflammation and improved neurological deficits after HI. The anti-inflammatory effects of rh-CSF1 partially acted through activating the CSF1R/PLCG2/PKCε/CREB signaling pathway after HI. These results suggest that rh-CSF1 may serve as a potential therapeutic approach to ameliorate injury in HIE patients.


Asunto(s)
Hipoxia-Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Animales Recién Nacidos , Humanos , Hipoxia-Isquemia Encefálica/fisiopatología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Fármacos Neuroprotectores/metabolismo , Fosfolipasa C gamma/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/fisiología
13.
J Neuroinflammation ; 17(1): 187, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539736

RESUMEN

BACKGROUND: Orexins are two neuropeptides (orexin A, OXA; orexin B, OXB) secreted mainly from the lateral hypothalamus, which exert a wide range of physiological effects by activating two types of receptors (orexin receptor 1, OXR1; orexin receptor 2, OXR2). OXA has equal affinity for OXR1 and OXR2, whereas OXB binds preferentially to OXR2. OXA rapidly crosses the blood-brain barrier by simple diffusion. Many studies have reported OXA's protective effect on neurological diseases via regulating inflammatory response which is also a fundamental pathological process in intracerebral hemorrhage (ICH). However, neuroprotective mechanisms of OXA have not been explored in ICH. METHODS: ICH models were established using stereotactic injection of autologous arterial blood into the right basal ganglia of male CD-1 mice. Exogenous OXA was administered intranasally; CaMKKß inhibitor (STO-609), OXR1 antagonist (SB-334867), and OXR2 antagonist (JNJ-10397049) were administered intraperitoneally. Neurobehavioral tests, hematoma volume, and brain water content were evaluated after ICH. Western blot and ELISA were utilized to evaluate downstream mechanisms. RESULTS: OXA, OXR1, and OXR2 were expressed moderately in microglia and astrocytes and abundantly in neurons. Expression of OXA decreased whereas OXR1 and OXR2 increased after ICH. OXA treatment significantly improved not only short-term but also long-term neurofunctional outcomes and reduced brain edema in ipsilateral hemisphere. OXA administration upregulated p-CaMKKß, p-AMPK, and anti-inflammatory cytokines while downregulated p-NFκB and pro-inflammatory cytokines after ICH; this effect was reversed by STO-609 or JNJ-10397049 but not SB-334867. CONCLUSIONS: OXA improved neurofunctional outcomes and mitigated brain edema after ICH, possibly through alleviating neuroinflammation via OXR2/CaMKKß/AMPK pathway.


Asunto(s)
Hemorragia Cerebral/metabolismo , Inflamación/metabolismo , Fármacos Neuroprotectores/farmacología , Orexinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/efectos de los fármacos , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Masculino , Ratones , Receptores de Orexina/efectos de los fármacos , Receptores de Orexina/metabolismo
14.
J Neurosci Res ; 98(11): 2275-2289, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32772463

RESUMEN

Role of peroxisome proliferator-activated receptors (PPARs) in the pathophysiology of stroke and protective effects of PPAR ligands have been widely investigated in the last 20 years. Activation of all three PPAR isoforms, but especially PPAR-γ, was documented to limit postischemic injury in the numerous in vivo, as well as in in vitro studies. PPARs have been demonstrated to act on multiple mechanisms and were shown to activate multiple protective pathways related to inflammation, apoptosis, BBB protection, neurogenesis, and oxidative stress. The aim of this review was to summarize two decades of PPAR research in stroke with emphasis on in vivo animal studies. We focus on each PPAR receptor separately and detail their implication in stroke. This review also discusses recent clinical efforts in the field and the epidemiological data with regard to role of PPAR polymorphisms in susceptibility to stroke, and tries to draw conclusions and describe future perspectives.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control , Animales , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/prevención & control , Receptores Activados del Proliferador del Peroxisoma/genética , Accidente Cerebrovascular/fisiopatología
15.
Infection ; 46(4): 559-563, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29383651

RESUMEN

BACKGROUND: Infection with Rickettsia parkeri is an emerging tick-borne illness, often accompanied by fever and an eschar at the site of tick attachment. We present three cases of R. parkeri in Virginia residents. CASE PRESENTATIONS: Case 1 presented initially afebrile, failed to seroconvert to rickettsial antigens, and was diagnosed by DNA testing of the eschar. Case 2 presented febrile with eschar, no serologies were performed, and was diagnosed by DNA testing of the eschar. Case 3 presented febrile with eschar, serologies were negative for rickettsial antigens, and was diagnosed by DNA testing of the eschar. CONCLUSION: DNA testing of eschars represents an under-utilized diagnostic test and may aid in cases where the diagnosis is not made clinically.


Asunto(s)
Infecciones por Rickettsia/diagnóstico , Infecciones por Rickettsia/microbiología , Rickettsia/genética , Anticuerpos Antibacterianos/inmunología , Biopsia , Doxiciclina/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Infecciones por Rickettsia/tratamiento farmacológico , Infecciones por Rickettsia/transmisión , Evaluación de Síntomas , Mordeduras de Garrapatas , Tomografía Computarizada por Rayos X , Virginia
17.
Heliyon ; 10(5): e26659, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449620

RESUMEN

Background: The coexistence of autoimmune encephalitis (AE) with multiple neural auto-antibodies is of great clinical significance because overlying antibodies may cause superposition or variation of clinical syndrome, which increases the difficulty of diagnosis and treatment of the disease. To the best of our knowledge, the coexistence of anti-N-methyl d-aspartate Receptor (NMDAR) and anti-IgLON5 antibodies in AE has not been published previously. Case presentation: A 38-year-old female patient presented to our hospital due to headache and abnormal psychiatric behavior. Based on her clinical manifestations (psychiatric and behavioral abnormalities, involuntary limb movements, and sleep disorders) and laboratory assessment results (positive human leukocyte antigen (HLA)-DQB1*05:01 haplotype, anti-NMDAR, and anti-IgLON5 antibodies), she was diagnosed as AE with coexisting anti-NMDAR and anti-IgLON5 antibodies. After treatment with intravenous methylprednisolone and immunoglobulin, as well as plasmapheresis, her symptoms gradually improved with exception for the sleep disorders. Although oral prednisone acetate and mycophenolate mofetil were continued after discharge, her symptoms of sleep disorders did not improve at 6-month follow-up. Conclusion: This is the first case of AE co-existing with anti-NMDAR and anti-IgLON5 antibodies. Co-existence of neural auto-antibodies should be considered when patients present with overlapping or atypical symptoms. Special attention should be paid to the treatment of these patients as some anti-IgLON5 encephalitis patients may not benefit from immunotherapy treatment.

18.
Transl Stroke Res ; 14(2): 250-262, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35867328

RESUMEN

Current approved therapies for acute ischemic stroke have a restricted therapeutic time window. Delayed recanalization, which has been utilized clinically in patients who have missed the time window for administration, may be a promising alternative for stroke patients. However, the underlying molecular mechanisms remain undiscovered. Herein, we hypothesized that delayed recanalization would increase M2 microglial polarization through the IL-4R (interleukin-4 receptor)/STAT6 (signal transducer and activators of transcription 6)/PPARγ (peroxisome proliferator-activated receptor γ) pathway, subsequently promoting stroke recovery in rats. The permanent middle cerebral artery occlusion (pMCAO) model was induced via intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). Interleukin (IL)-4 was administered intranasally at 3 days after pMCAO. AS1517499, a specific STAT6 inhibitor, was administered intranasally at 3 days after MCAO induction. Immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, volumetric measurements of brain infarct, and neurological behavior tests were conducted. Delayed recanalization at 3 days after MCAO increased the polarization of M2 microglia, decreased inflammation, and improved neurological behavior. IL-4 treatment administered on the 3rd day after pMCAO increased M2 microglial polarization, improved neurological behavior, and reduced infarction volume of pMCAO rats. The inhibition of STAT6 decreased the level of p-STAT6 and PPARγ in rats treated with delayed recanalization. Delayed recanalization improved neurological function by increasing microglial M2 polarization, possibly involved with the IL-4R/STAT6/PPARγ pathway after MCAO in rats.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Infarto de la Arteria Cerebral Media/metabolismo , Microglía/metabolismo , PPAR gamma , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico
19.
CNS Neurosci Ther ; 29(12): 3672-3683, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37408392

RESUMEN

Spontaneous subarachnoid hemorrhage (SAH) is one of the most devastating forms of stroke, with limited treatment modalities and poor patient outcomes. Previous studies have proposed multiple prognostic factors; however, relative research on treatment has not yet yielded favorable clinical outcomes. Moreover, recent studies have suggested that early brain injury (EBI) occurring within 72 h after SAH may contribute to its poor clinical outcomes. Oxidative stress is recognized as one of the main mechanisms of EBI, which causes damage to various subcellular organelles, including the mitochondria, nucleus, endoplasmic reticulum (ER), and lysosomes. This could lead to significant impairment of numerous cellular functions, such as energy supply, protein synthesis, and autophagy, which may directly contribute to the development of EBI and poor long-term prognostic outcomes. In this review, the mechanisms underlying the connection between oxidative stress and subcellular organelles after SAH are discussed, and promising therapeutic options based on these mechanisms are summarized.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ratas , Animales , Humanos , Hemorragia Subaracnoidea/tratamiento farmacológico , Ratas Sprague-Dawley , Estrés Oxidativo , Lesiones Encefálicas/metabolismo , Orgánulos/metabolismo , Apoptosis
20.
Curr Neuropharmacol ; 21(2): 392-408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35450528

RESUMEN

Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Caspasas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA