Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Planta ; 253(1): 23, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33403440

RESUMEN

MAIN CONCLUSION: 4-coumarate-CoA ligase (VIT_02s0109g00250) and copper amine oxidase (VIT_17s0000g09100) played essential roles in contributing to the total soluble solid and total anthocyanin variations induced by bud sport in grape berries. Taste and color, which are important organoleptic qualities of grape berry, undergo rapid and substantial changes during development and ripening. In this study, we used two cultivars 'Summer Black' and its bud sport 'Nantaihutezao' to explore and identify differentially expressed genes associated with total soluble solid and anthocyanin during developmental stages using RNA-Seq. Overall, substantial differences in expression were observed across berry development between the two cultivars. 5388 genes were detected by weighted gene co-expression network analysis (WGCNA) associated with the total soluble solid (TSS) and anthocyanin contents variations. Several of these genes were significantly enriched in the phenylalanine metabolism pathway; two hub genes 4-coumarate-CoA ligase (VIT_02s0109g00250) and copper amine oxidase (VIT_17s0000g09100) played the most essential roles in relating to the total soluble solid and total anthocyanin variations induced by bud sport through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and co-expression network analysis. These findings provide insights into the molecular mechanism responsible for the bud sport phenotype.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcriptoma , Vitis , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Transcriptoma/genética , Vitis/enzimología , Vitis/genética , Vitis/crecimiento & desarrollo
2.
J Biol Chem ; 294(2): 476-489, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30442713

RESUMEN

SOX2 is a dose-dependent master stem cell protein that controls the self-renewal and pluripotency or multipotency of embryonic stem (ES) cells and many adult stem cells. We have previously found that SOX2 protein is monomethylated at lysine residues 42 and 117 by SET7 methyltransferase to promote SOX2 proteolysis, whereas LSD1 and PHF20L1 act on both methylated Lys-42 and Lys-117 to prevent SOX2 proteolysis. However, the mechanism by which the methylated SOX2 protein is degraded remains unclear. Here, we report that L3MBTL3, a protein with the malignant-brain-tumor (MBT) methylation-binding domain, is required for SOX2 proteolysis. Our studies showed that L3MBTL3 preferentially binds to the methylated Lys-42 in SOX2, although mutation of Lys-117 also partially reduces the interaction between SOX2 and L3MBTL3. The direct binding of L3MBTL3 to the methylated SOX2 protein leads to the recruitment of the CRL4DCAF5 ubiquitin E3 ligase to target SOX2 protein for ubiquitin-dependent proteolysis. Whereas loss of either LSD1 or PHF20L1 destabilizes SOX2 protein and impairs the self-renewal and pluripotency of mouse ES cells, knockdown of L3MBTL3 or DCAF5 is sufficient to restore the protein levels of SOX2 and rescue the defects of mouse ES cells caused by LSD1 or PHF20L1 deficiency. We also found that retinoic acid-induced differentiation of mouse ES cells is accompanied by the enhanced degradation of the methylated SOX2 protein at both Lys-42 and Lys-117. Our studies provide novel insights into the mechanism by which the methylation-dependent degradation of SOX2 protein is controlled by the L3MBTL3-CRL4DCAF5 ubiquitin ligase complex.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción SOXB1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Estabilidad Proteica , Proteolisis , Ubiquitinación
3.
Nutr Cancer ; 72(6): 909-916, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31507226

RESUMEN

Accumulated studies have reported the prognostic significance of prealbumin in liver cancer, but the results were not conclusive. The aim of this study was to evaluate the association between pretreatment serum prealbumin and clinical outcome of liver cancer patients through a meta-analysis. We comprehensively searched EMBASE, PubMed, Web of Science and the Cochrane library to identify eligible studies. The pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) were utilized to evaluate the prognostic value of pretreatment serum prealbumin in overall survival (OS) and recurrence-free survival (RFS) of liver cancer patients. A total of 3470 patients from 10 eligible studies were finally included for analysis. The combined effects of prealbumin on liver cancer patients' OS and RFS were HR = 1.83, 95% CI: 1.46-2.30, P < 0.001 and HR = 1.47, 95% CI: 1.01-2.14, P = 0.045, respectively. Sensitivity and subgroup analysis showed that the pooled HR of prealbumin on liver cancer patients' OS was stable. Since potential publication bias was identified in the OS studies, the trim-and-fill method therefore was performed to explore publication bias, and the results showed reliability. This meta-analysis shows that low pretreatment serum prealbumin is significantly associated with poor prognosis of liver cancer patients.


Asunto(s)
Neoplasias Hepáticas , Prealbúmina , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados
4.
J Biol Chem ; 293(49): 18879-18889, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30301766

RESUMEN

During DNA replication or repair, the DNA polymerase cofactor, proliferating cell nuclear antigen (PCNA), homotrimerizes and encircles the replicating DNA, thereby acting as a DNA clamp that promotes DNA polymerase processivity. The formation of the PCNA trimer is also essential for targeting the replication-licensing protein, chromatin-licensing, and DNA replication factor 1 (CDT1), for ubiquitin-dependent proteolysis to prevent chromosomal DNA re-replication. CDT1 uses its PCNA-interacting peptide box (PIP box) to interact with PCNA, and the CRL4 E3 ubiquitin ligase subunit CDT2 is recruited through the formation of PCNA-CDT1 complexes. However, it remains unclear how CDT1 and many other PIP box-containing proteins are marked for degradation by the CRL4CDT2 ubiquitin ligase during DNA replication or damage. Here, using recombinant protein expression coupled with site-directed mutagenesis, we report that CDT2 and PCNA directly interact and this interaction depends on the presence of a highly conserved, C-terminal PIP box-like region in CDT2. Deletion or mutation of this region abolished the CDT2-PCNA interaction between CDT2 and PCNA both in vitro and in vivo Moreover, PCNA-dependent CDT1 degradation in response to DNA damage and replication during the cell cycle requires an intact PIP box in CDT2. The requirement of the PIP boxes in both CDT2 and its substrate CDT1 suggests that the formation of the PCNA trimeric clamp around DNA during DNA replication and repair may bring together CDT1 and CRL4CDT2 ubiquitin E3 ligase to target CDT1 for proteolysis in a DNA synthesis-dependent manner.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Línea Celular Tumoral , Daño del ADN/fisiología , Replicación del ADN/fisiología , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Multimerización de Proteína
5.
J Biol Chem ; 293(10): 3663-3674, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29358331

RESUMEN

The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción SOXB1/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293 , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/química , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Ratones Endogámicos C57BL , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/genética , Teratocarcinoma/enzimología , Teratocarcinoma/metabolismo , Teratocarcinoma/patología
6.
Bioorg Med Chem ; 26(8): 1523-1537, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29439916

RESUMEN

LSD1/KDM1 is a histone demethylase that preferentially removes methyl groups from the mono- and di-methylated lysine 4 in histone H3 (H3K4), key marks for active chromatin for transcriptional activation. LSD1 is essential for pluripotent embryonic stem cells and embryonic teratocarcinoma/carcinoma cells and its expression is often elevated in various cancers. We developed a new LSD1 inhibitor, CBB3001, which potently inhibited LSD1 activity both in vitro and in vivo. CBB3001 also selectively inhibited the growth of human ovarian teratocarcinoma PA-1 and mouse embryonic carcinoma F9 cells, caused the downregulation of pluripotent stem cell proteins SOX2 and OCT4. However, CBB3001 does not have significant inhibition on the growth of human colorectal carcinoma HCT116 cells or mouse fibroblast NIH3T3 cells that do not express these stem cell proteins. Our studies strongly indicate that CBB3001 is a specific LSD1 inhibitor that selectively inhibits teratocarcinoma and embryonic carcinoma cells that express SOX2 and OCT4.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Embrionario/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Teratocarcinoma/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma Embrionario/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HCT116 , Histona Demetilasas/metabolismo , Humanos , Ratones , Estructura Molecular , Células 3T3 NIH , Relación Estructura-Actividad , Teratocarcinoma/metabolismo
7.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082597

RESUMEN

Phytohormones strongly influence growth, development and nutritional quality of agricultural products by modulating molecular and biochemical changes. The purpose of the present study was to investigate the influence of root restriction (RR) treatment on the dynamic changes of main phytohormones during the berry development and ripening of "Summer Black" early ripening seedless grape (Vitis vinifera × V. labrusca), and to analyze the changes in the biosynthesis and signal transduction pathways of phytohormones by transcriptomics. Enzyme-linked immunosorbent assay (ELISA) and Ultra Performance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS) were used to quantify the phytohormone levels, and RNA-Seq was used to analyze the transcript abundance. The results showed that 23 transcripts involved in the phytohormone biosynthesis and 34 transcripts involved in the signal transduction pathways were significantly changed by RR treatment. RR also increased abscisic acid, brassinosteroid, ethylene, jasmonic acid and salicylic acid levels, while decreasing auxin, cytokinin, and gibberellin contents. The results of the present study suggest that RR treatment can accelerate the grape ripening process, and specific candidate genes were identified for further functional analysis.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , Vitis/genética , Vitis/metabolismo , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Vitis/crecimiento & desarrollo
8.
Molecules ; 21(11)2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801843

RESUMEN

Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the 'Summer Black' grape berry (Vitis vinifera × V. labrusca) under root restriction was investigated, which showed an increase of total soluble solids (TSS), color index of red grapes (CIRG) value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in 'Summer Black' grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in 'Summer Black' grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290) predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO) enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed plant-pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction.


Asunto(s)
Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Vitis/genética , Antocianinas/análisis , Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Fenoles/análisis , Raíces de Plantas/genética , Proantocianidinas/análisis , Metabolismo Secundario , Vitis/crecimiento & desarrollo
9.
Water Sci Technol ; 74(10): 2474-2482, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27858804

RESUMEN

This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL-1 to 189.9 mgL-1. The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.


Asunto(s)
Reactores Biológicos , Nitrógeno/metabolismo , Fósforo/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Reciclaje , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
10.
J Hum Evol ; 86: 32-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26194031

RESUMEN

The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Extremidad Inferior/fisiología , Pan troglodytes/fisiología , Pelvis/fisiología , Caminata/fisiología , Adulto , Animales , Antropología Física , Marcadores Fiduciales , Humanos , Imagenología Tridimensional , Masculino , Adulto Joven
11.
Food Chem ; 454: 139629, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805920

RESUMEN

In this study, we assessed the impact of varied water deficit irrigation frequencies (T1: 2.5 L/4 days; T2: 5 L/8 days; CK: 5 L/4 days) on Zitian Seedless grapes from veraison to post-ripening. Notably, total soluble solids increased during on-tree storage compared to at maturity, while total anthocyanin content decreased, particularly in CK (60.16%), T1 (62.35%), and less in T2 (50.54%). Glucose and fructose levels increased significantly in T1 and T2, more so in T2, but slightly declined in CK. Tartaric acid content increased by 41.42% in T2. Moreover, compared to regular irrigation, water deficit treatments enhanced phenolic metabolites and volatile compounds, including chlorogenic acid, various flavonoids, viniferin, hexanal, 2-nonenal, 2-hexen-1-ol, (E)-, 3-hydroxy-dodecanoic acid, and 1-hexanol, etc. Overall, the T2 treatment outperformed T1 and CK in maintaining grape quality. This study reveals that combining on-tree storage with water deficit irrigation not only improves grape quality but also water efficiency.


Asunto(s)
Riego Agrícola , Frutas , Vitis , Agua , Vitis/química , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Agua/metabolismo , Agua/análisis , Almacenamiento de Alimentos , Antocianinas/análisis , Antocianinas/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/química , Flavonoides/análisis , Flavonoides/metabolismo
12.
J Exp Biol ; 216(Pt 19): 3709-23, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24006347

RESUMEN

Musculoskeletal models have become important tools for studying a range of muscle-driven movements. However, most work has been in modern humans, with few applications in other species. Chimpanzees are facultative bipeds and our closest living relatives, and have provided numerous important insights into our own evolution. A chimpanzee musculoskeletal model would allow integration across a wide range of laboratory-based experimental data, providing new insights into the determinants of their locomotor performance capabilities, as well as the origins and evolution of human bipedalism. Here, we described a detailed three-dimensional (3D) musculoskeletal model of the chimpanzee pelvis and hind limb. The model includes geometric representations of bones and joints, as well as 35 muscle-tendon units that were represented using 44 Hill-type muscle models. Muscle architecture data, such as muscle masses, fascicle lengths and pennation angles, were drawn from literature sources. The model permits calculation of 3D muscle moment arms, muscle-tendon lengths and isometric muscle forces over a wide range of joint positions. Muscle-tendon moment arms predicted by the model were generally in good agreement with tendon-excursion estimates from cadaveric specimens. Sensitivity analyses provided information on the parameters that model predictions are most and least sensitive to, which offers important context for interpreting future results obtained with the model. Comparisons with a similar human musculoskeletal model indicate that chimpanzees are better suited for force production over a larger range of joint positions than humans. This study represents an important step in understanding the integrated function of the neuromusculoskeletal systems in chimpanzee locomotion.


Asunto(s)
Pierna/anatomía & histología , Locomoción , Modelos Anatómicos , Músculo Esquelético/anatomía & histología , Pan troglodytes/anatomía & histología , Pelvis/anatomía & histología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Pierna/fisiología , Masculino , Modelos Biológicos , Músculo Esquelético/fisiología , Pelvis/fisiología
13.
Dalton Trans ; 52(16): 5127-5140, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36961227

RESUMEN

Herein, the in situ N-alkylation between tripyridine molecules and C2H5OH was employed to obtain four iodometallates (Mn+ = Pb2+, Cu+ and Ag+). Among them, the alkylation degree of the tripyridine molecules is different, and the in situ-generated tripyridine derivatives showed different configurations. This is not only related to the structure of the inorganic anions but also related to the tripyridine molecule itself. The two moieties were actually templates for each other. The Pb2+ compound 1 was found to effectively catalyze the degradation of Rhodamine B (RhB), with its degradation efficiency reaching 94% in 70 min. In contrast, the degradation efficiency for the Cu+ and Ag+ compounds 2-4 did not exceed 50%. The free radical trapping test indicated that with the Pb2+ compound as the photocatalyst, both superoxide ion radicals (˙O2-) and holes (h+) played a key role. Alternatively, with compound 3 or 4 as the photocatalyst, only ˙O2- played a role. The differences should be related to the band gap of the materials, where the Pb2+ compound has a slightly wider band gap, leading to a higher exciton separation efficiency. Due to the involvement of more free radicals, the usual intermediates did not appear in the catalytic process of 1, while the colored species appeared in the catalytic process of 3 and 4. The cyclic test verified that compound 1 still had high catalytic activity after recycling five times. Also, we investigated the catalytic capacity of 1 for the degradation of 5-times the quantity of RhB. The degradation rate reached 99% in 5.5 hours, indicating that 1 has a good photocatalytic performance for degrading a high concentration of RhB. However, given that the amount of catalyst and dye used in each study was different, it was difficult to compare the results. Thus, herein, we introduced for the first time the method of calculating the TOF value to better evaluate the photodegradation performance of each hybrid material.

14.
Sci Rep ; 13(1): 240, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604456

RESUMEN

BES1, as the most important transcription factor responsible for brassinolide (BR) signaling, has been confirmed to play a significant role in regulating plant growth and the improvement of stress resistance. The transcriptional regulatory mechanism of BES1 has been well elucidated in several plants, such as Arabidopsis thaliana (A. thaliana), Triticum aestivum L. (T. aestivum), and Oryza sativa L. (O. sativa). Nevertheless, the genome-wide analysis of the BES1 family in Vitis vinifera L. (V. vinifera). has not been comprehensively carried out. Thus, we have conducted a detailed analysis and identification of the BES1 transcription factors family in V. vinifera; a total of eight VvBES1 genes was predicted, and the phylogenetic relationships, gene structures, and Cis-acting element in their promoters were also analyzed. BES1 genes have been divided into three groups (I, II and III) based on phylogenetic relationship analysis, and most of VvBES1 genes were in group III. Also, we found that VvBES1 genes was located at seven of the total nineteen chromosomes, whereas VvBES1-2 (Vitvi04g01234) and VvBES1-5 (Vitvi18g00924) had a collinearity relationship, and their three copies are well preserved. In addition, the intron-exon model of VvBES1 genes were mostly conserved, and there existed several Cis-acting elements related to stress resistance responsive and phytohormones responsive in BES1s genes promoter. Moreover, the BES1 expressions were different in different V. vinifera organs, and BES1 expressions were different in different V. vinifera varieties under saline-alkali stress and heat stress, the expression of VvBES1 also changed with the prolongation of saline-alkali stress treatment time. The above findings could not only lay a primary foundation for the further validation of VvBES1 function, but could also provide a reference for molecular breeding in V. vinifera.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Vitis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Unión al ADN/genética , Proteínas de Arabidopsis/genética
15.
Food Chem ; 411: 135540, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36701918

RESUMEN

Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.


Asunto(s)
Antocianinas , Frutas , Humanos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Procesamiento Proteico-Postraduccional , Epigénesis Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Biomater Adv ; 136: 212775, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929293

RESUMEN

Atherosclerosis (AS), the formation of plaque lesions in the walls of arteries, causes many mortalities and morbidities worldwide. Currently, achieving site-specific delivery and controlled release at plaques is difficult. Herein, we implemented the strategy of constructing a bionic multifunctional nanoplatform (BM-NP) for targeting and improving plaques. BM-NPs were prepared based on probucol-loaded mesoporous polydopamine (MPDA) carriers and were coated with platelet membranes to impart bionic properties. In vitro experiments confirmed that BM-NPs, which respond to near-infrared (NIR) for drug release, remove reactive oxygen species (ROS), thereby reducing the level of oxidized low-density lipoprotein (ox-LDL) and ultimately helping to inhibit macrophage foaming. In vivo experiments proved that BM-NPs actively accumulated in plaques in the mouse right carotid artery (RCA) ligation model. During treatment, BM-NPs with NIR laser irradiation more effectively reduced the area of plaque deposition and slowed the thickening of the arterial wall intima. More importantly, BM-NPs showed the advantage of inhibiting the increase in triglyceride (TG) content in the body, and good biocompatibility. Hence, our research results indicate that intelligent BM-NPs can be used as a potential nanotherapy to precisely and synergistically improve AS.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Animales , Aterosclerosis/tratamiento farmacológico , Dopamina/uso terapéutico , Liberación de Fármacos , Ratones , Nanopartículas/uso terapéutico , Placa Aterosclerótica/tratamiento farmacológico , Especies Reactivas de Oxígeno/uso terapéutico
17.
Mater Today Bio ; 15: 100308, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35711291

RESUMEN

Diabetic wounds have an extremely complex microenvironment of hyperglycemia, hypoxia and high reactive oxygen species (ROS). Therefore, the regulation and management of this microenvironment may provide a new and improved treatment method for chronic diabetic wound healing. Herein, a glucose/ROS cascade-responsive nanozyme (CHA@GOx) was developed for diabetic wound treatment based on Ce-driven coassembly by a special dual ligand (alendronic acid and 2-methylimidazole) and glucose oxidase (GOx). It possesses superoxide dismutase and catalase mimic activities, which effectively remove excess ROS. In particular, it can catalyze excessive hydrogen peroxide generated by the glucose oxidation reaction to produce oxygen, regulate the oxygen balance of the wound, and reduce the toxic side effects of GOx, thus achieving the purpose of synergistically repairing diabetic wounds. In vitro experiments show that CHA@GOx assists mouse fibroblast migration and promotes human umbilical vein endothelial cell tube formation. In vivo, it can induce angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. Taken together, this study indicates that the coassembly of multifunctional nanozymes has implications in diabetic wound healing.

18.
Acta Biomater ; 140: 206-218, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879294

RESUMEN

As the incidence of diabetes increases, its complication, diabetic foot ulcers, has become the main type of clinically chronic refractory wounds. Due to the hyperglycemic microenvironment of the diabetic wound, which leads to vascular defects and bacterial growth, the therapeutic effect of wound dressings lacking strategic design is relatively limited. In this study, we designed an injectable, "self-healing", and glucose-responsive multifunctional metal-organic drug-loaded hydrogel (DG@Gel) for diabetic wound healing. The functionalized hydrogel was prepared by phase-transfer-mediated metallo-nanodrugs, which were made by co-assembling zinc ions, organic ligands, and a small-molecule drug, deferoxamine mesylate (DFO), and the programmed loading of glucose oxidase (GOX). When injected into a diabetic wound, the GOX in DG@Gel changed the hyperglycemic wound microenvironment by decomposing excess glucose into hydrogen peroxide and glucuronic acid, which decreased the pH of the wound site. The low pH promoted the release of zinc ions and DFO, which exhibited synergistic antibacterial and angiogenesis activity for diabetic wound repair. In vitro experiments revealed the antibacterial activity and the cell proliferation, migration, and tube formation ability of DG@Gel. Moreover, in vivo experiments showed that DG@Gel can induce re-epithelialization, collagen deposition, and angiogenesis during wound healing in diabetic mice with good biocompatibility and biodegradability. The results suggest that this hydrogel is a promising innovative dressing for the treatment of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic ulcers, as one of the main types of chronic refractory wounds, are not treated effectively in the clinic due to a lack of strategic approach. In this study, we designed a glucose-responsive multifunctional metal-organic drug-loaded hydrogel (DG@Gel), which can change the hyperglycemic wound microenvironment by decomposing excess glucose into hydrogen peroxide and glucuronic acid. This in turn promoted the release of zinc ions and deferoxamine mesylate (DFO) in the hydrogel, which exhibited synergistic antibacterial and angiogenic activity for diabetic wound repair. Furthermore, the DG@Gel exhibited good biocompatibility and biodegradability in vivo. In general, this innovative strategy design may have great application potential in the treatment of various chronic wounds.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa/farmacología , Hidrogeles/química , Ratones , Cicatrización de Heridas
19.
Genes (Basel) ; 13(2)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35205325

RESUMEN

Root restriction (RR) has been reported to enhance grape berry quality in diverse aspects of grape life. In this study, RR-induced increases in the main primary metabolites in the grape berry and the expression of their related genes were studied at different developmental stages. Mainly the transcriptomic and metabolomic level were analyzed using 'Summer Black' grape berry as a material. The main results were as follows: A total of 11 transcripts involved in the primary metabolic pathways were significantly changed by the RR treatment. Metabolites such as sugars, organic acids, amino acids, starch, pectin, and cellulose were qualitatively and quantitatively analyzed along with their metabolic pathways. Sucrose synthase (VIT_07s0005g00750, VIT_11s0016g00470) and sucrose phosphate synthase (VIT_18s0089g00410) were inferred to play critical roles in the accumulation of starch, sucrose, glucose, and fructose, which was induced by the RR treatment. RR treatment also promoted the malic acid and tartaric acid accumulation in the young berry. In addition, the grape berries after the RR treatment tended to have lower pectin and cellulose content.


Asunto(s)
Vitis , Celulosa/metabolismo , Frutas , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Almidón/análisis , Transcriptoma/genética , Vitis/metabolismo
20.
J Mater Chem B ; 10(29): 5644-5654, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819133

RESUMEN

Developing intelligent responsive platforms to carry out high-performance therapy is of great interest for the treatment of tumors and their metastases. However, effective drug loading, activity maintenance, off-target leakage, and response to collaborative therapy remain great challenges. Herein, a targeted intelligent responsive mesoporous polydopamine (MPDA) nanosystem was reported for use in gene-mediated photochemotherapy for synergistic tumor treatment. First, the MPDA was surface modified to maintain a positive charge near the surface and to impart active targeting. Then, gambogic acid (GA) was encapsulated in the MPDA, solidified by phase change materials (PCMs), and finally loaded with siRNA by electrostatic interactions to obtain the smart nanodelivery system (PPMD@GA/si). In vitro and in vivo experiments showed that it not only effectively avoids siRNA inactivation and accidental release of GA, but also possesses potential for targeted accumulation to tumor tissue and mild-temperature photothermal therapy and chemotherapy via near infrared (NIR) radiation. Additionally, the release of siRNA could also effectively inhibit tumor invasion and metastasis to realize multimodal synergistic therapy. Overall, our studies provide a promising idea for synergistic tumor and metastasis treatment based on vector construction.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Indoles , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Polímeros/farmacología , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA