Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(2): 31, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279998

RESUMEN

The small, heavily glycosylated protein CD24 is primarily expressed by many immune cells and is highly expressed mostly in cancer cells. As one of the most crucial biomarkers of cancers, CD24 is frequently highly expressed in solid tumors, while tumor-associated macrophages express Siglec-10 at high levels, Siglec-10 and CD24 can interact on innate immune cells to lessen inflammatory responses to a variety of disorders. Inhibiting inflammation brought on by SHP-1 and/or SHP-2 phosphatases as well as cell phagocytosis by macrophages, the binding of CD24 to Siglec-10 can prevent toll-like receptor-mediated inflammation. Targeted immunotherapy with immune checkpoint inhibitors (ICI) has lately gained popularity as one of the best ways to treat different tumors. CD24 is a prominent innate immune checkpoint that may be a useful target for cancer immunotherapy. In recent years, numerous CD24/Siglec-10-related research studies have made tremendous progress. This study discusses the characteristics and workings of CD24/Siglec-10-targeted immunotherapy and offers a summary of current advances in CD24/Siglec-10-related immunotherapy research for cancer. We then suggested potential directions for CD24-targeted immunotherapy, basing our speculation mostly on the results of recent preclinical and clinical trials.


Asunto(s)
Macrófagos , Neoplasias , Humanos , Transducción de Señal , Inflamación , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Inmunoterapia/métodos , Antígeno CD24/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836914

RESUMEN

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Adhesión Bacteriana , Proteínas Bacterianas , Biopelículas , Cisteína Endopeptidasas , Glucósidos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fenoles , Infecciones Estafilocócicas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Glucósidos/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Fenoles/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Mariposas Nocturnas/microbiología , Virulencia/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Inhibidores Enzimáticos/farmacología , Polifenoles
3.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877424

RESUMEN

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Asunto(s)
Ferroptosis , Ácidos Cetoglutáricos , Osteoartritis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Ferroptosis/efectos de los fármacos , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Masculino , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
Mol Biol Rep ; 50(4): 3155-3166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36696024

RESUMEN

BACKGROUND: Chondrocytes are the only cell components in the cartilage, which has the poor regeneration ability. Thus, repairing damaged cartilage remains a huge challenge. Sika deer antlers are mainly composed of cartilaginous tissues that have an astonishing capacity for repair and renewal. Our previous study has demonstrated the transforming growth factor ß (TGF-ß1) is considered to be a key molecule involved in rapid growth, with the strongest expression in the cartilage layer. However, it remains to be clarified whether deer TGF-ß1 has significantly different function from other species such as mouse, and what is the molecular mechanism of regulating cartilage growth. METHODS: Primary chondrocytes was collected from new born mouse rib cartilage. The effect of TGF-ß1 on primary chondrocytes viability was elucidated by RNA sequencing (RNA-seq) technology combined with validation methods such as quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence assay (IFA). Differential expression genes were identified using the DEGseq package. RESULTS: Our results demonstrated that the overexpression of deer TGF-ß1 possibly promoted chondrocyte proliferation and extracellular matrix (ECM) synthesis, while simultaneously suppressing chondrocyte differentiation through regulating transcription factors, growth factors, ECM related genes, proliferation and differentiation marker genes, such as Comp, Fgfr3, Atf4, Stat1 etc., and signaling pathways such as the MAPK signaling pathway, inflammatory mediator regulation of TRP channels etc. In addition, by comparing the amino acid sequence and structures between the deer TGF-ß1 and mouse TGF-ß1, we found that deer TGF-ß1 and mouse TGF-ß1 proteins are mainly structurally different in arm domains, which is the main functional domain. Phenotypic identification results showed that deer TGF-ß1 may has stronger function than mouse TGF-ß1. CONCLUSION: ​These results suggested that deer TGF-ß1 has the ability to promote chondrogenesis by regulating chondrocyte proliferation, differentiation and ECM synthesis. This study provides insights into the molecular mechanisms underlying the effects of deer TGF-ß1 on chondrocyte viability.


Asunto(s)
Condrocitos , Ciervos , Animales , Ratones , Condrocitos/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Ciervos/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Transducción de Señal/genética , Proliferación Celular/genética , Células Cultivadas , Condrogénesis
5.
Acta Neurochir (Wien) ; 165(8): 2131-2137, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166509

RESUMEN

BACKGROUND: Previous studies have demonstrated satisfactory outcomes of percutaneous endoscopic thoracic decompression (PETD) for single-segment thoracic ossification of the ligamentum flavum (TOLF). However, the clinical outcomes of PETD in patients with multi-segment TOLF (mTOLF) remain unclear. The aim of the present study was to evaluate the efficacy and safety of PETD for patients with multi-segment mTOLF. METHODS: Eighteen consecutive patients (41 segments) with mTOLF were treated with PETD between January 2020 and December 2021. The clinical outcomes were evaluated using the modified Japanese Orthopaedic Association (mJOA) score and Visual Analog Scale (VAS), whereas radiographic parameters were measured by cross-section area of the spinal canal and anteroposterior diameter of the spinal cord. RESULTS: The follow-up period ranged from 14 to 34 months. The mean operation time and blood loss were 154.06 ± 32.14 min and 61.72 ± 12.72 ml, respectively. Hospital stay after first-stage operation was 10.89 ± 2.42 days. The mJOA score and VAS score significantly improved at the final follow-up, with a mean mJOA recovery rate of 63.3 ± 21.90%. The incidence of complications was 12.2% per level. The radiographic outcomes showed adequate decompression of the spinal cord. CONCLUSIONS: The present study demonstrates that PETD is effective and safe as a minimally invasive procedure to treat patients with mTOLF. All patients showed relief of their symptoms and improvement in neurological function.


Asunto(s)
Ligamento Amarillo , Osificación Heterotópica , Enfermedades de la Médula Espinal , Humanos , Osteogénesis , Descompresión Quirúrgica/métodos , Ligamento Amarillo/diagnóstico por imagen , Ligamento Amarillo/cirugía , Resultado del Tratamiento , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/cirugía , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/cirugía , Estudios Retrospectivos , Enfermedades de la Médula Espinal/cirugía
6.
BMC Endocr Disord ; 22(1): 165, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761253

RESUMEN

BACKGROUND: The present study investigated the prevalence of osteoporosis (OP) among patients with essential hypertension (EH) in the Changchun community and analysed the correlation between EH and OP. METHODS: The study included 425 subjects with EH and 425 age- and sex-matched healthy controls. Bone mineral density (BMD) and serum creatinine (CR) levels were measured, and the subjects' current EH and OP statuses were surveyed to analyse the correlation between EH and OP. RESULTS: The EH group exhibited lower BMD and a higher rate of having OP than the control group, and this difference was statistically significant (p < 0.05). A significant sex difference in the BMD T-score was observed among the subjects (male: - 1.19 ± 1.55, female: - 1.70 ± 1.34). In both the EH group and the control group, the rate of having OP in females was greater than that in males. However, the OP prevalence among subjects with EH varied significantly by age, body weight, fracture history, nocturnal urination frequency, depression and anxiety status, duration of hypertension, and antihypertensive medication use (p < 0.05). Two-way analysis of variance suggested an effect of the interaction between different EH statuses and bone mass conditions on the serum CR values (F = 3.584, p = 0.028, bias η2 = 0.008). CONCLUSIONS: The prevalence of OP and low BMD were significantly higher among subjects with EH than among healthy controls. Additionally, the findings indicate that age, weight, fracture history, nocturnal urination frequency, depression and anxiety, duration of hypertension and antihypertensive drug use may be correlated to having OP in EH subjects, requiring further studies. Moreover, serum CR levels in subjects with different bone mass profiles were strongly influenced by the presence or absence of EH, and the serum CR levels differed significantly with the interaction of these two factors.


Asunto(s)
Fracturas Óseas , Hipertensión , Osteoporosis , Densidad Ósea , Hipertensión Esencial/complicaciones , Hipertensión Esencial/epidemiología , Femenino , Humanos , Hipertensión/epidemiología , Masculino , Osteoporosis/tratamiento farmacológico , Osteoporosis/epidemiología , Osteoporosis/etiología , Prevalencia , Factores de Riesgo
7.
Biochem Genet ; 60(2): 676-706, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34410558

RESUMEN

Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.


Asunto(s)
Cartílago Articular , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrogénesis , Expresión Génica , Esternón
8.
Biomed Chromatogr ; 36(4): e5323, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34993992

RESUMEN

Wu-tou decoction has been used as a traditional Chinese medicine prescription for thousands of years. It comprises five herbs, namely Radix Aconiti Preparata, Ephedrae Herba, Astragali Radix, Glycyrrhiza Radix, and Paeoniae Radix Alba. In addition, the original prescription contains honey, but in modern research, the existence of honey is commonly ignored. The aim was to investigate the effect of absorption in rats after oral wu-tou decoction with or without honey. In this research, a rapid and sensitive UPLC-MS/MS method was investigated for the quantitative analysis of ephedrine, pseudoephedrine, paeoniflorin, calycosin-7-glucoside, glycyrrhizic acid, liquiritin, and benzoylmesaconine in rat plasma after single and continuous oral decoctions. The results of the pharmacokinetic parameters showed that Cmax , CL/F, AUC0-t , and AUC0-∞ in the honey group were significantly increased than those in the non-honey group except for ephedrine and pseudoephedrine. The same trend was observed regardless of single or continuous oral administrations. Research studies showed that honey could promote the absorption of some effective components in wu-tou decoction in rats, enhance bioavailability, and provide a theoretical basis for the scientific and rational compatibility of the original prescription.


Asunto(s)
Medicamentos Herbarios Chinos , Miel , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/farmacocinética , Ratas , Espectrometría de Masas en Tándem/métodos
9.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1120-1125, 2022 Feb.
Artículo en Zh | MEDLINE | ID: mdl-35285213

RESUMEN

Since the implementation of drug registration in China, the classification of Chinese medicine has greatly met the needs of public health and effectively guided the transformation, inheritance, and innovation of research achievements on traditional Chinese medicine(TCM). In the past 30 years, the development of new Chinese medicine has followed the registration transformation model of " one prescription for single drug". This model refers to the R&D and registration system of modern drugs, and approximates to the " law-abiding" medication method in TCM clinic, while it rarely reflects the sequential therapy of syndrome differentiation and comprehensive treatment with multiple measures. In 2017, Opinions on Deepening the Reform of Review and Approval System and Encouraging the Innovation of Drugs and Medical Devices released by the General Office of the CPC Central Committee and the General Office of the State Council pointed out that it is necessary to " establish and improve the registration and technical evaluation system in line with the characteristics of Chinese medicine, and handle the relationship between the traditional advantages of Chinese medicine and the requirements of modern drug research". Therefore, based on the development law and characteristics of TCM, clinical thinking should be highlighted in the current technical requirements and registration system of research and development of Chinese medicine. Based on the current situation of registration supervision of Chinese medicine and the modern drug research in China, the present study analyzed limitations and deficiency of " one prescription for single drug" in the research and development of Chinese medicine. Additionally, a new type of " series prescriptions" was proposed, which was consistent with clinical thinking and clinical reality. This study is expected to contribute to the independent innovation and high-quality development of the TCM industry.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , China , Medicamentos Herbarios Chinos/uso terapéutico , Prescripciones , Salud Pública
10.
Cell Mol Biol Lett ; 25: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944020

RESUMEN

BACKGROUND: Deer antlers have become a valuable model for biomedical research due to the capacities of regeneration and rapid growth. However, the molecular mechanism of rapid antler growth remains to be elucidated. The aim of the present study was to compare and explore the molecular control exerted by the main beam and brow tine during rapid antler growth. METHODS: The main beams and brow tines of sika deer antlers were collected from Chinese sika deer (Cervus nippon) at the rapid growth stage. Comparative transcriptome analysis was conducted using RNA-Seq technology. Differential expression was assessed using the DEGseq package. Functional Gene Ontology (GO) enrichment analysis was accomplished using a rigorous algorithm according to the GO Term Finder tool, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was accomplished with the R function phyper, followed by the hypergeometric test and Bonferroni correction. Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to verify the RNA levels for differentially expressed mRNAs. RESULTS: The expression levels of 16 differentially expressed genes (DEGs) involved in chondrogenesis and cartilage development were identified as significantly upregulated in the main beams, including transcription factor SOX-9 (Sox9), collagen alpha-1(II) chain (Col2a1), aggrecan core protein (Acan), etc. However, the expression levels of 17 DEGs involved in endochondral ossification and bone formation were identified as significantly upregulated in the brow tines, including collagen alpha-1(X) chain (Col10a1), osteopontin (Spp1) and bone sialoprotein 2 (Ibsp), etc. CONCLUSION: These results suggest that the antler main beam has stronger growth capacity involved in chondrogenesis and cartilage development compared to the brow tine during rapid antler growth, which is mainly achieved through regulation of Sox9 and its target genes, whereas the antler brow tine has stronger capacities of endochondral bone formation and resorption compared to the main beam during rapid antler growth, which is mainly achieved through the genes involved in regulating osteoblast and osteoclast activities. Thus, the current research has deeply expanded our understanding of the intrinsic molecular regulation displayed by the main beam and brow tine during rapid antler growth.


Asunto(s)
Cuernos de Venado/crecimiento & desarrollo , Ciervos/genética , Transcriptoma/genética , Animales , Condrogénesis/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Genoma/genética , Osteogénesis/genética , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
11.
Mol Biol Rep ; 46(2): 1635-1648, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30680597

RESUMEN

Deer antlers are unique cranial appendages capable of regeneration and rapid growth. In addition, deer antlers have been widely used in traditional Chinese medicine to promote the function of the kidneys, reproductive system, bones and nervous system. It has been shown that water-soluble substances are the major bioactive components within the deer antlers. In this study, we prepared aqueous extracts from deer antlers during a rapid growth stage. We investigated the effects of antler extracts on primary chondrocytes by analyzing their protein expression patterns using isobaric tags for relative and absolute quantitation technology. We demonstrated that antler extracts promote chondrocyte proliferation and prevent chondrocyte differentiation and apoptosis by controlling multiple cellular processes involved in genomic stability, epigenetic alterations, ribosome biogenesis, protein synthesis and cytoskeletal reorganization. Antler extracts significantly increased the expression levels of proliferation markers Mki67 and Stmn1 and differentiation inhibitor Acp5 as well as cellular apoptosis inhibitors Ndufa4l2 and Rcn1. Thus, this study has greatly expanded our current knowledge of the molecular effects of antler extracts on chondrocytes. It has also shed new light on possible strategies to prevent damage to and to treat cartilage and its related diseases by using aqueous extracts from growing Sika deer antlers.


Asunto(s)
Cuernos de Venado/crecimiento & desarrollo , Condrocitos/efectos de los fármacos , Extractos de Tejidos/farmacología , Animales , Cuernos de Venado/química , Cuernos de Venado/metabolismo , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , China , Condrocitos/fisiología , Condrogénesis/efectos de los fármacos , Ciervos , Proteómica/métodos
12.
Mol Biol Rep ; 46(5): 4861-4872, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31286391

RESUMEN

Traditional Chinese medicine has been proven to be effective in treating human diseases according to a long-term observation for more than 2000 years. However, the precise molecular mechanisms of a majority of the medications are still largely unknown. Deer antler has been clinically used as an effective animal medication in traditional Chinese medicine for many centuries. Previous studies have demonstrated that antler extracts play crucial roles in promoting bone and cartilage development, growth and repair. However, the underlying molecular mechanism remains to be elucidated. In the present study, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology and a systematic bioinformatics analysis accompanied with validation method to obtain a full spectrum of the serum protein profiles under deer antler extract treatment. We identified a complex interaction network formed by the positive regulation of Tropomyosins (Tpm1, 2 and 4), WD repeat-containing protein 1 (Wdr1), Alpha-actinin-1 (Actn1) and Destrin (Dstn) and the negative regulation of Alpha-2-macroglobulin (A2m), Serine protease inhibitor A3 N (Serpina3n) and Apolipoproteins (Apoh and Apof), which coordinately interact with multiple proteins and signaling pathways. Our results suggest that the therapeutic effects of deer antler extract on treating bone diseases might achieved though the regulation of bone formation and remodeling by controlling a series of serum proteins and signaling pathways that were essential for osteoblast and osteoclast activities. Thus, this study has greatly deepened the current knowledge about the molecular mechanism of therapeutic effects of deer antler extract on bone diseases such as osteoporosis.


Asunto(s)
Cuernos de Venado/química , Productos Biológicos/farmacología , Huesos/efectos de los fármacos , Huesos/metabolismo , Ciervos , Proteoma , Proteómica , Animales , Productos Biológicos/química , Biomarcadores , Masculino , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Reproducibilidad de los Resultados , Transducción de Señal
13.
Mol Cell Biochem ; 385(1-2): 265-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24104452

RESUMEN

Glioblastoma is the most aggressive cerebral gliomas. Despite advances in therapies, the prognosis is still very poor. Therefore, novel therapeutic strategies are required. As a proteasome inhibitor, bortezomib has shown its efficacy as an active antitumor agent against a variety of tumors. However, inhibition of proteasome activity leads to cell death and also induces cell autophagy, and due to the dual roles of autophagy in the survival and death of tumor cells, the effect of inhibition of autophagy on glioblastoma cells remains to be explored. We therefore assessed whether bortezomib is capable of inducing autophagy, and investigated the antitumor effect of bortezomib combined with autophagy inhibitors on human glioblastoma U251 and U87 cells. Cell viability was measured by MTT assay. The expressions of autophagy and apoptosis-related proteins were determined by Western blot analysis. U251 and U87 cells proliferation was inhibited in a dose-dependent manner. Both apoptosis and autophagy induced by bortezomib were observed in human glioblastoma U87 and U251 cells. However, when U251 and U87 cells were co-treated with bortezomib and autophagy inhibitors 3-MA or Atg7 siRNA, the autophagy inhibitors blocked the autophagy in the cells and resulted in a further inhibition of cell proliferation and a further increase in cell apoptosis as compared with that treated with bortezomib alone. These findings indicated that combination of bortezomib and autophagy inhibitors may shed new light on glioblastoma treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ácidos Borónicos/farmacología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Inhibidores de Proteasoma/farmacología , Pirazinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 7 Relacionada con la Autofagia , Bortezomib , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Enzimas Activadoras de Ubiquitina/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1331488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050570

RESUMEN

Background: Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective: Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method: The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results: 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion: This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.


Asunto(s)
Cadmio , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoporosis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Cadmio/toxicidad , Animales , Ratas , Apoptosis/efectos de los fármacos , Femenino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Cápsulas
15.
Drug Des Devel Ther ; 18: 1583-1602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765877

RESUMEN

Background: Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods: The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results: In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1ß and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1ß-induced chondrocytes and DMM-induced rats. Conclusion: RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.


Asunto(s)
Achyranthes , Angelica sinensis , Medicamentos Herbarios Chinos , Farmacología en Red , Osteoartritis de la Rodilla , Animales , Angelica sinensis/química , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Ratones , Achyranthes/química , Rehmannia/química , Simulación del Acoplamiento Molecular , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Masculino , Ratones Endogámicos C57BL , Ratas
16.
Phytomedicine ; 128: 155279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581801

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Mitofagia , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Mitofagia/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Cartílago Articular/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
17.
Front Med (Lausanne) ; 10: 1115500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529244

RESUMEN

Cuproptosis is a novel form of cell death, mediated by protein lipid acylation and highly associated with mitochondrial metabolism, which is regulated in the cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs frequently, and its incidence is increasing worldwide every year. Currently, a growing number of studies have shown that cuproptosis-related genes (CRGs) play a crucial role in the development and progression of a variety of tumors. However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, we identified differentially expressed genes in UC, Likewise, CRGs expression profiles and immunological profiles were evaluated. Using 75 UC samples, we typed UC based on the expression profiles of CRGs, followed by correlative immune cell infiltration analysis. Using the weighted gene co-expression network analysis (WGCNA) methodology, the cluster's differentially expressed genes (DEGs) were produced. Then, the performances of extreme gradient boosting models (XGB), support vector machine models (SVM), random forest models (RF), and generalized linear models (GLM) were constructed and predicted. Finally, the effectiveness of the best machine learning model was evaluated using five external datasets, receiver operating characteristic curve (ROC), the area under the curve of ROC (AUC), a calibration curve, a nomogram, and a decision curve analysis (DCA). A total of 13 CRGs were identified as significantly different in UC and control samples. Two subtypes were identified in UC based on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed significant differences between immune cells of different subtypes. WGCNA results showed a total of 8 modules with significant differences between subtypes, with the turquoise module being the most specific. The machine learning results showed satisfactory performance of the XGB model (AUC = 0.981). Finally, the construction of the final 5-gene-based XGB model, validated by the calibration curve, nomogram, decision curve analysis, and five external datasets (GSE11223: AUC = 0.987; GSE38713: AUC = 0.815; GSE53306: AUC = 0.946; GSE94648: AUC = 0.809; GSE87466: AUC = 0.981), also proved to predict subtypes of UC with accuracy. Our research presents a trustworthy model that can predict the likelihood of developing UC and methodically outlines the complex relationship between CRGs and UC.

18.
Phytomedicine ; 113: 154742, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893673

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an inflammatory response in chondrocytes, causing extracellular matrix (ECM) degradation and cartilage destruction, affecting millions of people worldwide. Chinese herbal formulae BuShen JianGu Fang (BSJGF) has been clinically applied for treating OA-related syndromes, but the underlying mechanism still unclear. METHODS: The components of BSJGF were analyzed by liquid chromatography-mass spectrometry (LC-MS). To make a traumatic OA model, the anterior cruciate ligament of 6-8-week-old male SD rats were cut and then the 0.4 mm metal was used to destroy the knee joint cartilage. OA severity was assessed by histological and Micro-CT. Mouse primary chondrocytes were utilized to investigate the mechanism of BSJGF alleviate osteoarthritis, which was examined by RNA-seq technology combined with a series of functional experiments. RESULTS: A total 619 components were identified by LC-MS. In vivo, BSJGF treatment result in a higher articular cartilage tissue area compared to IL-1ß group. Treatment also significantly increased Tb.Th, BV/TV and BMD of subchondral bone (SCB), which implied a protective effect on maintaining the stabilization of SCB microstructure. In vitro results indicated BSJGF promoted chondrocyte proliferation, increased the expression level of cartilage-specific genes (Sox9, Col2a1, Acan) and synthesized acidic polysaccharide, while inhibiting the release of catabolic enzymes and production of reactive oxygen species (ROS) induced by IL-1ß. Transcriptome analysis showed that there were 1471 and 4904 differential genes between IL-1ß group and blank group, BSJGF group and IL-1ß group, respectively, including matrix synthesis related genes (Col2a1, H19, Acan etc.), inflammation related genes (Comp, Pcsk6, Fgfr3 etc.) and oxidative stress related genes (Gm26917, Bcat1, Sod1 etc.). Furthermore, KEGG analysis and validation results showed that BSJGF reduces OA-mediated inflammation and cartilage damaged due to modulation of NF-κB/Sox9 signaling axis. CONCLUSION: The innovation of the present study was the elucidation of the alleviating cartilage degradation effect of BSJGF in vivo and in vitro and discovery of its mechanism through RNA-seq combined with function experiments, which provides a biological rationale for the clinical application of BSJGF for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Masculino , Ratas , Animales , Ratones , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Osteoartritis/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo
19.
Front Public Health ; 11: 1084005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875399

RESUMEN

Background: Osteoporosis has already been a growing health concern worldwide. The influence of living area, lifestyle, socioeconomic, and medical conditions on the occurrence of osteoporosis in the middle-aged and elderly people in China has not been fully addressed. Methods: The study was a multicenter cross-sectional study on the middle-aged and elderly permanent residents, which gathered information of 22,081 residents from June 2015 to August 2021 in seven representative regions of China. The bone mineral density of lumbar vertebrae and hip were determined using the dual-energy X-ray absorptiometry densitometer instruments. Serum levels of bone metabolism markers were also measured. Information about education, smoking, and chronic diseases were also collected through face-to-face interviews. Age-standardized prevalence and 95% confidence intervals (CIs) of osteopenia and osteoporosis by various criteria were estimated by subgroups and overall based on the data of China 2010 census. The relationships between the osteoporosis or osteopenia and sociodemographic variables or other factors were examined using univariate linear models and multivariable multinomial logit analyses. Results: After screening, 19,848 participants (90%) were enrolled for the final analysis. The age-standardized prevalence of osteoporosis was estimated to be 33.49%(95%CI, 32.80-34.18%) in the middle-aged and elderly Chinese permanent residents, for men and women was 20.73% (95% CI, 19.58-21.87%) and 38.05% (95% CI, 37.22-38.89%), respectively. The serum concentrations of bone metabolic markers, and calcium and phosphorus metabolism were influenced by age, body mass index (BMI), gender, education level, regions, and bone mass status. Women, aged 60 or above, BMI lower than 18.5 kg/m2, low education level including middle school, primary school and no formal education as well as current regular smoking, a history of fracture were all significantly associated with a higher risk of osteoporosis and osteopenia in the middle-aged and elderly people. Conclusions: This study revealed dramatic regional differences in osteoporosis prevalence in China, and female, aged 60 or older, low BMI, low education level, current regular smoking, and a history of fracture were associated with a high risk of osteoporosis. More prevention and treatment resources should be invested into particular population exposed to these risk factors.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Anciano , Masculino , Persona de Mediana Edad , Humanos , Femenino , Fumar , Estudios de Cohortes , Estudios Transversales , Prevalencia , China
20.
J Spinal Disord Tech ; 25(3): E67-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22124422

RESUMEN

STUDY DESIGN: Retrospective. OBJECTIVE: To evaluate the clinical safety and accuracy of the Tai Chi ((Equation is included in full-text article.)) technique for placing pedicle screws, without intraoperative radiographic imaging, in severe scoliotic spines. SUMMARY OF BACKGROUND DATA: The current techniques for pedicle screw placement have a number of drawbacks in cases of severe scoliosis, including difficulty or impossibility to use, delayed operative time, requiring the presence of trained personnel for the duration of the surgery, high cost issues, increased radiation exposure, and technical challenges. No previous report has described the application of the Tai Chi pedicle screw placement technique for severe scoliosis. MATERIAL AND METHODS: Between 2006 and 2008, the cases of 39 consecutive patients with severe scoliosis (Cobb angle >100 degrees) who underwent posterior correction and stabilization (from T1 to L5) using 992 transpedicular screws were examined. The mean patient age was 25.7 (range, 11 to 63) years at the time of surgery. Pedicle screws were inserted by the Tai Chi technique using anatomic landmarks and preoperative radiographs as a guide. Tai Chi drilling fully utilizes the natural anatomic and physical characteristics of pedicles and unconstrained circular force. By nature, a drill bit driven by unconstrained circular force would migrate within the pedicle along a path of least resistance, advancing along the central cancellous bone tunnel spontaneously. Accurate drilling was achieved by following the nature and sticking to the hand sensation when the drill bit broke through the cancellous bone. The total time for inserting all pedicle screws in each case was recorded. Postoperative computed tomography scans were performed to evaluate the position of the inserted pedicle screws. The screw position was classified as "in" or "out." The distance of perforation was measured. RESULT: The average Cobb angle was 127 degrees (range, 100 to 153 degrees). The number of screws inserted at each level were as follows: T1 (n=10), T2 (n=34), T3 (n=46), T4 (n=53), T5 (n=61), T6 (n=69), T7 (n=75), T8 (n=76), T9 (n=76), T10 (n=77), T11 (n=76), T12 (n=78), L1 (n=77), L2 (n=68), L3 (n=56), L4 (n=38), and L5 (n=22). There were 923 (93%) "in" screws and 69 (7%) "out" screws. The overall accuracy of screw placement was 93%. There were no neurological, vascular, or visceral complications. No screws required postoperative repositioning. The average time for pedicle screw placement was 73 seconds. CONCLUSIONS: Our findings suggest that the Tai Chi pedicle screw placement technique, which does not require intraoperative radiographic imaging, is an accurate, reliable, safe, and time-saving method of placing pedicle screws in severe scoliotic spines.


Asunto(s)
Tornillos Óseos , Escoliosis/diagnóstico por imagen , Escoliosis/cirugía , Fusión Vertebral/instrumentación , Fusión Vertebral/métodos , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Implantación de Prótesis/métodos , Radiografía , Taichi Chuan , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA