Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 10(4)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314324

RESUMEN

Teixobactin is a highly potent cyclic depsipeptide which kills a broad range of multi-drug resistant, Gram-positive bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA) without detectable resistance. In this work, we describe the design and rapid synthesis of novel teixobactin analogues containing two cysteine moieties, and the corresponding disulfide-bridged cyclic analogues. These analogues differ from previously reported analogues, such as an Arg10-teixobactin, in terms of their macrocyclic ring size, and feature a disulfide bridge instead of an ester linkage. The new teixobactin analogues were screened against Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus. Interestingly, one teixobactin analogue containing all l-amino acid building blocks showed antibacterial activity against MRSA for the first time. Our data indicates that macrocyclisation of teixobactin analogues with disulfide bridging is important for improved antibacterial activity. In our work, we have demonstrated the unprecedented use of a disulfide bridge in constructing the macrocyclic ring of teixobactin analogues.

2.
J Med Chem ; 61(5): 2009-2017, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29363971

RESUMEN

The cyclic depsipeptide, teixobactin, kills a number of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its class that has shown in vivo antibacterial efficacy. In this work, we designed and synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly potent antibacterial activities against Staphylococcus aureus, MRSA, and vancomycin-resistant enterococci (VRE) in vitro. One analogue, d-Arg4-Leu10-teixobactin, 2, was found to be noncytotoxic in vitro and in vivo. Moreover, topical instillation of peptide 2 in a mouse model of S. aureus keratitis decreased the bacterial bioburden (>99.0% reduction) and corneal edema significantly as compared to untreated mouse corneas. Collectively, our results have established the high therapeutic potential of a teixobactin analogue in attenuating bacterial infections and associated severities in vivo.


Asunto(s)
Depsipéptidos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Animales , Depsipéptidos/síntesis química , Diseño de Fármacos , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Resistencia a la Vancomicina
3.
Chem Sci ; 8(12): 8183-8192, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29568465

RESUMEN

Teixobactin is a highly promising antibacterial depsipeptide consisting of four d-amino acids and a rare l-allo-enduracididine amino acid. l-allo-Enduracididine is reported to be important for the highly potent antibacterial activity of teixobactin. However, it is also a key limiting factor in the development of potent teixobactin analogues due to several synthetic challenges such as it is not commercially available, requires a multistep synthesis, long and repetitive couplings (16-30 hours). Due to all these challenges, the total synthesis of teixobactin is laborious and low yielding (3.3%). In this work, we have identified a unique design and developed a rapid synthesis (10 min µwave assisted coupling per amino acid, 30 min cyclisation) of several highly potent analogues of teixobactin with yields of 10-24% by replacing the l-allo-enduracididine with commercially available non-polar residues such as leucine and isoleucine. Most importantly, the Leu10-teixobactin and Ile10-teixobactin analogues have shown highly potent antibacterial activity against a broader panel of MRSA and Enterococcus faecalis (VRE). Furthermore, these synthetic analogues displayed identical antibacterial activity to natural teixobactin (MIC 0.25 µg mL-1) against MRSA ATCC 33591 despite their simpler design and ease of synthesis. We have confirmed lipid II binding and measured the binding affinities of individual amino acid residues of Ala10-teixobactin towards geranyl pyrophosphate by NMR to understand the nature and strength of binding interactions. Contrary to current understanding, we have shown that a cationic amino acid at position 10 is not essential for target (lipid II) binding and potent antibacterial activity of teixobactin. We thus provide strong evidence contrary to the many assumptions made about the mechanism of action of this exciting new antibiotic. Introduction of a non-cationic residue at position 10 allows for tremendous diversification in the design and synthesis of highly potent teixobactin analogues and lays the foundations for the development of teixobactin analogues as new drug-like molecules to target MRSA and Mycobacterium tuberculosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA