Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cell Physiol ; 237(10): 3845-3859, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35892191

RESUMEN

Within the cardiovascular system, the protein vasorin (Vasn) is predominantly expressed by vascular smooth muscle cells (VSMCs) in the coronary arteries and the aorta. Vasn knockout (Vasn-/- ) mice die within 3 weeks of birth. In the present study, we investigated the role of vascular Vasn expression on vascular function. We used inducible Vasn knockout mice (VasnCRE-ERT KO and VasnSMMHC-CRE-ERT2 KO , in which respectively all cells or SMCs only are targeted) to analyze the consequences of total or selective Vasn loss on vascular function. Furthermore, in vivo effects were investigated in vitro using human VSMCs. The death of VasnCRE-ERT KO mice 21 days after tamoxifen injection was concomitant with decreases in blood pressure, angiotensin II levels, and vessel contractibility to phenylephrine. The VasnSMMHC-CRE-ERT2 KO mice displayed concomitant changes in vessel contractibility in response to phenylephrine and angiotensin II levels. In vitro, VASN deficiency was associated with a shift toward the SMC contractile phenotype, an increase in basal intracellular Ca2+ levels, and a decrease in the SMCs' ability to generate a calcium signal in response to carbachol or phenylephrine. Additionally, impaired endothelium-dependent relaxation (due to changes in nitric oxide signaling) was observed in all Vasn knockout mice models. Our present findings highlight the role played by Vasn SMC expression in the maintenance of vascular functions. The mechanistic experiments suggested that these effects are mediated by SMC phenotype switching and changes in intracellular calcium homeostasis, angiotensin II levels, and NO signaling.


Asunto(s)
Angiotensina II , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Calcio/metabolismo , Carbacol , Humanos , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Fenilefrina/metabolismo , Tamoxifeno
2.
Kidney Int ; 99(6): 1382-1391, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33647324

RESUMEN

In chronic kidney disease (CKD), calcium-sensing receptor (CaSR) expression and function have been extensively studied in parathyroid tissue and vascular tissues. To examine whether similar changes occurred in other tissues, we measured total and surface CaSR expression in monocytes of patients with various stages of CKD and healthy volunteers respectively in cross-sectional studies. We further explored in vitro the impact of uremic serum on CaSR expression in monocytes (U937 and THP-1 cell lines), and whether human peripheral blood mononuclear cells or U937 and THP-1 monocytes might modify vascular calcium deposition in rat carotid arteries in vitro. CKD was associated with a decrease in peripheral blood mononuclear cell CaSR expression both in total and at the monocyte surface alone (43% and 34%, respectively in CKD stages 4-5). This decrease was associated with a reduction in the ability of monocytes to inhibit vascular calcification in vitro. Pretreatment with the calcimimetic NPSR568 of peripheral blood mononuclear cells isolated from patients with CKD significantly improved monocyte capacity to reduce carotid calcification in vitro. The fewer peripheral blood mononuclear cells expressing cell surface CaSR, the more calcimimetic treatment enhanced the decrease of carotid calcium content. Thus, we demonstrate that monocyte CaSR expression is decreased in patients with CKD and provide in vitro evidence for a potential role of this decrease in the promotion of vascular calcification. Hence, targeting this alteration or following monocyte CaSR expression as an accessible marker might represent a promising therapeutic strategy in CKD-associated arterial calcification.


Asunto(s)
Monocitos , Receptores Sensibles al Calcio , Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Calcio , Estudios Transversales , Humanos , Leucocitos Mononucleares , Ratas , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control
3.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560362

RESUMEN

This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor trans-4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid (t-AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of t-AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by t-AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.


Asunto(s)
Susceptibilidad a Enfermedades , Epóxido Hidrolasas/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Metabolismo de los Lípidos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Animales , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Diferenciación Celular , Endotelio/metabolismo , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , ARN Mensajero/genética , Ratas
4.
J Mol Cell Cardiol ; 129: 2-12, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30769016

RESUMEN

INTRODUCTION AND AIMS: Calcific aortic valve disease (CAVD) is the most common heart valve disease in western countries. It has been reported that activation of the calcium-sensing receptor(CaSR) expressed by vascular smooth muscle cells prevents vascular calcification. However, to date, the CaSR's expression and function in cardiac valves have not been studied. The present study sought to evaluate the presence of the CaSR within human valvular interstitial cells (hVICs), assess the CaSR's functionality, and ascertain its involvement in hVIC calcification. METHODS AND RESULTS: Data from Western blot, flow cytometry and immunocytochemistry experiments demonstrated that primary hVICs express the CaSR. The receptor was functional, since the incubation of hVICs with the calcimimetic R-568 significantly increased Ca2+-induced ERK1/2 phosphorylation, and exposure to the calcilytic NPS2143 reduced ERK1/2 activation. A reduction in endogenous CaSR expression by hVICs (using siRNA) was associated with significantly lower levels of Ca2+-induced mineralization (quantified using Alizarin Red staining). Similar data were obtained after the pharmacological inhibition of CaSR activity by the calcilytic NPS2143. In contrast, overexpression of a functional CaSR amplified Ca2+-induced calcification. Pharmacological activation of the CaSR with the calcimimetic R-568 showed similar effects. CaSR's procalcific properties are associated with increased osteogenic transition (as characterized by elevated mRNA expression of bone morphogenetic protein 2 and osterix), and reduced the expression of the calcification inhibitor osteopontin. Histological analysis of 12 human aortic tricuspid valves showed that CaSR expression was greater in calcified areas than in non-calcified areas. These data were confirmed by Western blots. CONCLUSIONS: To the best of our knowledge, this study is the first to have demonstrated that hVICs express a functional CaSR. Taken as a whole, our data suggest that activation of the CaSR expressed by hVICs might be a key promoter of CAVD progression.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/metabolismo , Receptores Sensibles al Calcio/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Calcio/metabolismo , Regulación hacia Abajo , Humanos , Minerales/metabolismo , Osteogénesis , Receptores Sensibles al Calcio/genética , Válvula Tricúspide/metabolismo
5.
Nephrol Dial Transplant ; 34(7): 1125-1134, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481303

RESUMEN

BACKGROUND: Vascular calcification (VC) is amplified during chronic kidney disease, partly due to uraemic toxins such as inorganic phosphate (Pi) and indoxyl sulphate (IS) that trigger osteogenic differentiation of vascular smooth muscle cells (VSMCs). These toxins also alter endothelial cell (EC) functions but whether this contributes to VC is unknown. Here, we hypothesized that ECs exposed to Pi and IS promote VSMC calcification. METHODS: Human umbilical vein ECs were treated with Pi, IS or both, and then the conditioned media [endothelial cell conditioned medium (EC-CM)] was collected. Human aortic SMCs (HASMCs) were exposed to the same toxins, with or without EC-CM, and then calcification and osteogenic differentiation were evaluated. Procalcifying factors secreted from ECs in response to Pi and IS were screened. Rat aortic rings were isolated to assess Pi+IS-induced calcification at the tissue level. RESULTS: Pi and Pi+IS induced HASMCs calcification, which was significantly exacerbated by EC-CM. Pi+IS induced the expression and secretion of interleukin-8 (IL-8) from ECs. While IL-8 treatment of HASMCs stimulated the Pi+IS-induced calcification in a concentration-dependent manner, IL-8 neutralizing antibody, IL-8 receptors antagonist or silencing IL-8 gene expression in ECs before collecting EC-CM significantly prevented the EC-CM procalcifying effect. IL-8 did not promote the Pi+IS-induced osteogenic differentiation of HASMCs but prevented the induction of osteopontin (OPN), a potent calcification inhibitor. In rat aortic rings, IS also promoted Pi-induced calcification and stimulated the expression of IL-8 homologues. Interestingly, in the Pi+IS condition, IL-8 receptor antagonist lifted the inhibition of OPN expression and partially prevented aortic calcification. CONCLUSION: These results highlight a novel role of IL-8, whose contribution to VC in the uraemic state results at least from interaction between ECs and VSMCs.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Indicán/farmacología , Interleucina-8/metabolismo , Fosfatos/farmacología , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/etiología , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/complicaciones , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
6.
Stem Cells ; 32(8): 2084-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24723429

RESUMEN

Ten-eleven-translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet the role of TET2 in human hematopoietic development remains largely unknown. Here, we show that TET2 expression is low in human embryonic stem cell (ESC) lines and increases during hematopoietic differentiation. shRNA-mediated TET2 knockdown had no effect on the pluripotency of various ESCs. However, it skewed their differentiation into neuroectoderm at the expense of endoderm and mesoderm both in vitro and in vivo. These effects were rescued by reintroducing the targeted TET2 protein. Moreover, TET2-driven differentiation was dependent on NANOG transcriptional factor. Indeed, TET2 bound to NANOG promoter and in TET2-deficient cells the methylation of the NANOG promoter correlated with a decreased in NANOG expression. The altered differentiation resulting from TET2 knockdown in ESCs led to a decrease in both the number and the cloning capacities of hematopoietic progenitors. These defects were due to an increased apoptosis and an altered gene expression profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm and hematopoietic differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Dioxigenasas , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Proteína Homeótica Nanog , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Int J Mol Sci ; 16(11): 26555-81, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26556350

RESUMEN

DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.


Asunto(s)
Alquilantes/farmacología , Aductos de ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Alquilación , Núcleo Celular , Citoplasma , Daño del ADN , Replicación del ADN , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/metabolismo
8.
Biochem J ; 452(1): 147-59, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23409959

RESUMEN

In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known. The objective of the present study was to identify proteins involved in the recognition and mechanism of action of S23906-DNA adducts. We found that GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a protein that binds to S23906-alkylated single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. We used the CASTing (cyclic amplification of sequence targeting) method to identify GAPDH DNA-binding selectivity and then evaluated its binding to such selected S23906-alkylated sequences. At the cellular level, alkylation of S23906-1 results in an increase in the binding of GAPDH and its protein partner HMG (high-mobility group) B1 to the chromatin. Regarding the multiple roles of GAPDH in apoptosis and DNA repair, the cytotoxic and apoptotic activities of GAPDH were evaluated and present opposite effects in two different cellular models.


Asunto(s)
Acronina/análogos & derivados , Aductos de ADN/química , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Proteínas Nucleares/química , Acronina/química , Alquilación , Aductos de ADN/genética , Aductos de ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células HT29 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética
9.
Toxicol Appl Pharmacol ; 254(1): 8-17, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21504755

RESUMEN

The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA as part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Ascomicetos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Neoplasias/tratamiento farmacológico , Alquilación/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Glutatión/metabolismo , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Humanos , Microscopía por Video , Relación Estructura-Actividad
10.
Sci Rep ; 11(1): 7464, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33811249

RESUMEN

Chronic kidney disease (CKD) worsens ischemic stroke severity in both patients and animals. In mice, these poorer functional outcomes are associated with decreased brain activity of AMP-activated protein kinase (AMPK), a molecule that recently emerged as a potential therapeutic target for ischemic stroke. The antidiabetic drug metformin, a well-known activator of AMPK, has improved stroke outcomes in diabetic patients with normal renal function. We investigated whether chronic metformin pre-conditioning can rescue AMPK activity and prevent stroke damage in non-diabetic mice with CKD. Eight-week-old female C57BL/6J mice were assigned to CKD or SHAM groups. CKD was induced through right kidney cortical electrocautery, followed by left total nephrectomy. Mice were then allocated to receive metformin (200 mg/kg/day) or vehicle for 5 weeks until stroke induction by transient middle cerebral artery occlusion (tMCAO). The infarct volumes were lower in CKD mice exposed to metformin than in vehicle-treated CKD mice 24 h after tMCAO. Metformin pre-conditioning of CKD mice improved their neurological score, grip strength, and prehensile abilities. It also enhanced AMPK activation, reduced apoptosis, increased neuron survival and decreased microglia/macrophage M1 signature gene expression as well as CKD-induced activation of the canonical NF-κB pathway in the ischemic lesions of CKD mice.


Asunto(s)
Metformina/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control , Adenilato Quinasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Peso Corporal , Infarto Encefálico/sangre , Infarto Encefálico/complicaciones , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/genética , Activación Enzimática/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Gliosis/sangre , Gliosis/complicaciones , Gliosis/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/genética , Precondicionamiento Isquémico , Macrófagos/efectos de los fármacos , Macrófagos/patología , Metformina/sangre , Metformina/farmacología , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Modelos Biológicos , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/genética , Accidente Cerebrovascular/genética
11.
Toxins (Basel) ; 12(6)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570781

RESUMEN

Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.


Asunto(s)
Vasos Sanguíneos/metabolismo , Cresoles/sangre , Indicán/sangre , Insuficiencia Renal Crónica/complicaciones , Ésteres del Ácido Sulfúrico/sangre , Uremia/complicaciones , Enfermedades Vasculares/etiología , Animales , Vasos Sanguíneos/fisiopatología , Factor-23 de Crecimiento de Fibroblastos , Humanos , Mediadores de Inflamación/metabolismo , Estrés Oxidativo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/terapia , Uremia/sangre , Uremia/fisiopatología , Uremia/terapia , Enfermedades Vasculares/sangre , Enfermedades Vasculares/fisiopatología , Enfermedades Vasculares/prevención & control
12.
Mol Pharmacol ; 76(6): 1172-85, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19752199

RESUMEN

S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one. Here, we evaluated the cytotoxic and antitumor activities of the two pure cis-enantiomers and investigated the mechanism of action of both cis- and trans-racemates and their enantiomers in terms of DNA alkylation potency and locally drug-induced DNA helix opening process. Reaction with glutathione, as a detoxification process, was also studied. The trans-compounds, both as racemate or separated enantiomers, were found less potent than the corresponding cis-derivatives. Among the cis-enantiomers, the most efficient one regarding DNA alkylation bears the acetate on the reactive C1 position in the R configuration, both on purified DNA and genomic DNA extracted from cell cultures. By contrast, the most cytotoxic and tumor-active enantiomer bears the C1-acetate in the S configuration. Distinct cellular DNA-alkylation levels or covalent bonding to glutathione could not explain the differences. However, we showed that the S and R orientations of the acetate on C1 asymmetric carbon lead to different local opening of the DNA, as visualized using nuclease S1 mapping. These different interactions could lead to modulated DNA-repair, protein/DNA interaction, and apoptosis processes.


Asunto(s)
Acronina/análogos & derivados , Antineoplásicos Alquilantes/farmacología , Citotoxinas/farmacología , Sustancias Intercalantes/farmacología , Acronina/química , Acronina/farmacología , Animales , Antineoplásicos Alquilantes/química , Dominio Catalítico , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/química , Aductos de ADN/metabolismo , Humanos , Sustancias Intercalantes/química , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neoplasias Experimentales/tratamiento farmacológico , Estereoisomerismo
13.
Sci Rep ; 9(1): 6432, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015533

RESUMEN

Ischemic stroke is highly prevalent in chronic kidney disease (CKD) patients and has been associated with a higher risk of neurological deterioration and in-hospital mortality. To date, little is known about the processes by which CKD worsens ischemic stroke. This work aimed to investigate the cellular and molecular mechanism associated with ischemic stroke severity in an in vivo model of CKD. CKD was induced through right kidney cortical electrocautery in 8-week-old female C57BL/6 J mice followed by left total nephrectomy. Transient middle cerebral artery occlusion (tMCAO) was performed 6 weeks after left nephrectomy. Twenty-four hours after tMCAO, the infarct volumes were significantly wider in CKD than in SHAM mice. CKD mice displayed decreased neuroscore, impaired ability to remain on rotarod device, weaker muscular strength and decreased prehensile score. Apoptosis, neuronal loss, glial cells recruitment and microglia/macrophages M1 signature genes CD32, CD86, IL-1ß, IL-6, MCP1 and iNOS were significantly increased within ischemic lesions of CKD mice. This effect was associated with decreased AMP kinase phosphorylation and increased activation of the NFΚB pathway. Pharmacological targeting of AMP kinase activity, which is known to block microglia/macrophages M1 polarization, appears promising to improve stroke recovery in CKD.


Asunto(s)
Isquemia Encefálica/fisiopatología , Corteza Renal/metabolismo , Debilidad Muscular/fisiopatología , Neuronas/metabolismo , Insuficiencia Renal Crónica/fisiopatología , Accidente Cerebrovascular/fisiopatología , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis/genética , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Electrocoagulación , Femenino , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Corteza Renal/patología , Ratones , Ratones Endogámicos C57BL , Debilidad Muscular/complicaciones , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo
14.
Nat Genet ; 47(10): 1131-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26280900

RESUMEN

No major predisposition gene for familial myeloproliferative neoplasms (MPN) has been identified. Here we demonstrate that the autosomal dominant transmission of a 700-kb duplication in four genetically related families predisposes to myeloid malignancies, including MPN, frequently progressing to leukemia. Using induced pluripotent stem cells and primary cells, we demonstrate that overexpression of ATG2B and GSKIP enhances hematopoietic progenitor differentiation, including of megakaryocytes, by increasing progenitor sensitivity to thrombopoietin (TPO). ATG2B and GSKIP cooperate with acquired JAK2, MPL and CALR mutations during MPN development. Thus, the germline duplication may change the fitness of cells harboring signaling pathway mutations and increases the probability of disease development.


Asunto(s)
Duplicación de Gen , Predisposición Genética a la Enfermedad , Células Germinativas , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Proteínas Represoras/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Anciano , Proteínas Relacionadas con la Autofagia , Niño , Cromosomas Humanos Par 14 , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
15.
PLoS One ; 8(9): e74257, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24066127

RESUMEN

JAK2(V617F) is the predominant mutation in myeloproliferative neoplasms (MPN). Modeling MPN in a human context might be helpful for the screening of molecules targeting JAK2 and its intracellular signaling. We describe here the derivation of induced pluripotent stem (iPS) cell lines from 2 polycythemia vera patients carrying a heterozygous and a homozygous mutated JAK2(V617F), respectively. In the patient with homozygous JAK2(V617F), additional ASXL1 mutation and chromosome 20 allowed partial delineation of the clonal architecture and assignation of the cellular origin of the derived iPS cell lines. The marked difference in the response to erythropoietin (EPO) between homozygous and heterozygous cell lines correlated with the constitutive activation level of signaling pathways. Strikingly, heterozygous iPS cells showed thrombopoietin (TPO)-independent formation of megakaryocytic colonies, but not EPO-independent erythroid colony formation. JAK2, PI3K and HSP90 inhibitors were able to block spontaneous and EPO-induced growth of erythroid colonies from GPA(+)CD41(+) cells derived from iPS cells. Altogether, this study brings the proof of concept that iPS can be used for studying MPN pathogenesis, clonal architecture, and drug efficacy.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Janus Quinasa 2/metabolismo , Trastornos Mieloproliferativos/metabolismo , Células Cultivadas , Eritropoyetina/farmacología , Humanos , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Trombopoyetina/farmacología
16.
Eur J Med Chem ; 46(6): 2117-31, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21435753
17.
J Nucleic Acids ; 20102010 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-20725618

RESUMEN

DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

18.
Eur J Med Chem ; 45(2): 623-38, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19931949

RESUMEN

A series of twenty six 8-hydroxyquinoline substituted amines, structurally related to compounds 2 and 3, were synthesized to evaluate the effects of structural changes on antitumor activity and understand their mechanism of action. The studies were performed on a wide variety of cancer cell lines within glioma and carcinoma models. The results obtained from chemical models and biological techniques such as microarrays suggest the following hypothesis that a quinone methide intermediate which does not react with DNA but which gives covalent protein thiol adducts. Micro-array analysis showed that the drugs induce the expression of a variety of stress related genes responsible for the cytotoxic and cytostatic effects in carcinoma and glioblastoma cells respectively. The described analogues could represent new promising anti-cancer candidates with specific action mechanisms, targeting accessible thiols from specific proteins and inducing potent anti-cancer effects.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Bencilaminas/química , Bencilaminas/farmacología , Oxiquinolina/química , Antineoplásicos/metabolismo , Benzoquinonas/química , Bencilaminas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Concentración 50 Inhibidora , Nucleótidos/metabolismo , Estrés Fisiológico/genética , Relación Estructura-Actividad
19.
Eur J Med Chem ; 44(8): 3235-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19386396

RESUMEN

In the context of the design and synthesis of DNA ligands, some new hetarene annelated carbazoles were synthesized. As lead structure the intercalating tetracyclic systems pyrido[2,3-a]- and pyrido[4,3-a]-carbazoles and in one case a thieno[2,3-a]-carbazole were taken into account. A dialkyl amino amidic chain was introduced to the planar chromophoric system with the intent to generate minor groove binding properties. The cytotoxicity of some compounds was examined by the NCI antitumor screening. Furthermore, biophysical as well as biochemical studies were performed in order to get some information about the DNA-binding properties and inhibition of DNA related functional enzymes of this new series of molecules.


Asunto(s)
Antineoplásicos/síntesis química , Carbazoles/síntesis química , Carbazoles/farmacología , ADN/metabolismo , Diseño de Fármacos , Indoles/química , Procesos Fotoquímicos , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Carbazoles/química , Carbazoles/metabolismo , Bovinos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Ciclización , Fluorescencia , Humanos , Desnaturalización de Ácido Nucleico , Espectrofotometría Ultravioleta , Estereoisomerismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I , Inhibidores de Topoisomerasa II , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA