Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Cell Death Discov ; 10(1): 225, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724504

RESUMEN

Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.

3.
J Invest Dermatol ; 144(2): 206-224, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189700

RESUMEN

IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36ß, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.


Asunto(s)
Dermatitis , Interleucina-1 , Psoriasis , Enfermedades de la Piel , Humanos , Antiinflamatorios , Citocinas/metabolismo , Interleucina-1/metabolismo , Isoformas de Proteínas , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo , Receptores de Interleucina-1/metabolismo
4.
Leuk Lymphoma ; 64(14): 2236-2248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37708450

RESUMEN

Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Apoptosis , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/metabolismo , Benzoquinonas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Línea Celular , Línea Celular Tumoral
5.
Cancers (Basel) ; 11(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581454

RESUMEN

Colorectal cancer (CRC) is a leading killer cancer worldwide and one of the most common malignancies with increasing incidences of mortality. Guggulsterone (GS) is a plant sterol used for treatment of various ailments such as obesity, hyperlipidemia, diabetes, and arthritis. In the current study, anti-cancer effects of GS in human colorectal cancer cell line HCT 116 was tested, potential targets identified using mass spectrometry-based label-free shotgun proteomics approach and key pathways validated by proteome profiler antibody arrays. Comprehensive proteomic profiling identified 14 proteins as significantly dysregulated. Proteins involved in cell proliferation/migration, tumorigenesis, cell growth, metabolism, and DNA replication were downregulated while the protein with functional role in exocytosis/tumor suppression was found to be upregulated. Our study evidenced that GS treatment altered expression of Bcl-2 mediated the mitochondrial release of cytochrome c which triggered the formation of apoptosome as well as activation of caspase-3/7 leading to death of HCT 116 cells via intrinsic apoptosis pathway. GS treatment also induced expression of p53 protein while p21 expression was unaltered with no cell cycle arrest. In addition, GS was found to inhibit NF-kB signaling in colon cancer cells by quelling the expression of its regulated gene products Bcl-2, cIAP-1, and survivin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA