Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Epilepsia ; 56(1): 82-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25523819

RESUMEN

OBJECTIVES: Mutations in the ATP1α3 subunit of the neuronal Na+/K+-ATPase are thought to be responsible for seizures, hemiplegias, and other symptoms of alternating hemiplegia of childhood (AHC). However, the mechanisms through which ATP1A3 mutations mediate their pathophysiologic consequences are not yet understood. The following hypotheses were investigated: (1) Our novel knock-in mouse carrying the most common heterozygous mutation causing AHC (D801N) will exhibit the manifestations of the human condition and display predisposition to seizures; and (2) the underlying pathophysiology in this mouse model involves increased excitability in response to electrical stimulation of Schaffer collaterals and abnormal predisposition to spreading depression (SD). METHODS: We generated the D801N mutant mouse (Mashlool, Mashl+/-) and compared mutant and wild-type (WT) littermates. Behavioral tests, amygdala kindling, flurothyl-induced seizure threshold, spontaneous recurrent seizures (SRS), and other paroxysmal activities were compared between groups. In vitro electrophysiologic slice experiments on hippocampus were performed to assess predisposition to hyperexcitability and SD. RESULTS: Mutant mice manifested a distinctive phenotype similar to that of humans with AHC. They had abnormal impulsivity, memory, gait, motor coordination, tremor, motor control, endogenous nociceptive response, paroxysmal hemiplegias, diplegias, dystonias, and SRS, as well as predisposition to kindling, to flurothyl-induced seizures, and to sudden unexpected death. Hippocampal slices of mutants, in contrast to WT animals, showed hyperexcitable responses to 1 Hz pulse-trains of electrical stimuli delivered to the Schaffer collaterals and had significantly longer duration of K+-induced SD responses. SIGNIFICANCE: Our model reproduces the major characteristics of human AHC, and indicates that ATP1α3 dysfunction results in abnormal short-term plasticity with increased excitability (potential mechanism for seizures) and a predisposition to more severe SD responses (potential mechanism for hemiplegias). This model of the human condition should help in understanding the molecular pathways underlying these phenotypes and may lead to identification of novel therapeutic strategies of ATP1α3 related disorders and seizures.


Asunto(s)
Conducta Animal , Encéfalo/fisiopatología , Hemiplejía/fisiopatología , Convulsiones/fisiopatología , Amígdala del Cerebelo/fisiopatología , Animales , Convulsivantes , Modelos Animales de Enfermedad , Electroencefalografía , Fenómenos Electrofisiológicos , Flurotilo , Técnicas de Sustitución del Gen , Hemiplejía/genética , Excitación Neurológica/fisiología , Aprendizaje , Locomoción , Memoria , Ratones , Ratones Transgénicos , Convulsiones/inducido químicamente , ATPasa Intercambiadora de Sodio-Potasio/genética
2.
Epilepsia ; 54(10): 1789-800, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24032507

RESUMEN

PURPOSE: There is a gap in our knowledge of the factors that modulate the predisposition to seizures following perinatal hypoxia. Herein, we investigate in a mouse model the effects of two distinct factors: developmental stage after the occurrence of the perinatal insult, and the presence of a seizure predisposing mutation. METHODS: Effects of age: P6 (postnatal day 6) mouse pups were subjected to acute hypoxia down to 4% O2 over the course of 45 min. Seizure susceptibilities to flurothyl-induced seizures (single exposures) and to flurothyl kindling were determined at specific subsequent ages. Effects of mutation: Heterozygote mice, with deletion of one copy of the Kcn1a gene, subjected to P6 hypoxia were compared as adults to wild-type mice with respect to susceptibility to a single exposure to flurothyl and to the occurrence of spontaneous seizures as detected by hippocampal electroencephalography (EEG) and video recordings. KEY FINDINGS: Effects of age: As compared to controls, wild-type mice exposed to P6 hypoxia had a shortened seizure latency in response to a single flurothyl exposure at P50, but not at P7 or P28 (p < 0.04). In addition, perinatal hypoxia at P6 enhanced the rate of development of flurothyl kindling performed at P28-38 (p < 0.03), but not at P7-17. Effects of mutation: Kcn1a heterozygous mice subjected to P6 hypoxia exhibited increased susceptibility to flurothyl-induced seizures at P50 as compared to Normoxia heterozygote littermates, and to wild-type Hypoxia and Normoxia mice. In addition, heterozygotes exposed to P6 hypoxia were the only group in which spontaneous seizures were detected during the period of long-term monitoring (p < 0.027 in all comparisons). SIGNIFICANCE: Our data establish a mouse model of mild perinatal hypoxia in which we document the following: (1) the emergence, after a latent period, of increased susceptibility to flurothyl-induced seizures, and to flurothyl induced kindling; and (2) an additive effect of a gene mutation to the seizure predisposing consequences of perinatal hypoxia, thereby demonstrating that a modifier (or susceptibility) gene can exacerbate the long-term consequences of hypoxic injury.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Hipoxia/complicaciones , Canal de Potasio Kv.1.1/genética , Convulsiones/etiología , Factores de Edad , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Flurotilo/farmacología , Heterocigoto , Hipocampo/fisiopatología , Humanos , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/fisiología , Canal de Potasio Kv.1.1/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología
3.
Neuron ; 55(5): 677-8, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785172

RESUMEN

Alzheimer's disease is a devastating neurological disorder. The role of hyperexcitability in the disease's cognitive decline is not completely understood. In this issue of Neuron, Palop et al. report both limbic seizures and presumed homeostatic responses to seizures in an animal model of Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/fisiopatología , Giro Dentado/fisiopatología , Epilepsia/fisiopatología , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Epilepsia/etiología , Homeostasis/genética , Humanos , Mutación/genética , Inhibición Neural/genética , Neuropéptido Y/metabolismo
4.
Epilepsy Behav ; 20(4): 597-601, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21450530

RESUMEN

Because antiepileptic drug therapy is usually given chronically with resulting concerns about long-term neurotoxicity, and because short-term topiramate (TPM) therapy has been reported to be neuroprotective against the effects of acute hypoxia, we investigated the long-term effects of continuous TPM therapy during early stages of development. Four groups of rat pups were studied: two sham manipulated normoxia groups and two acute hypoxia groups (at postnatal day [P] 10 down to 4% O(2)), each injected intraperitoneally daily with either vehicle or TPM (30 mg/kg) from P0 to P21. TPM therapy prevented hypoxia-induced long-term (P81) memory impairment (Morris water maze) as well as aggressivity (handling test). The hypoxia group receiving TPM also showed a trend toward reduced CA1 hippocampal cell loss. The aforementioned TPM therapy had no long-term deleterious effects on memory, hyperactivity, or CA1 cell counts in the TPM normoxia group as compared with normal controls.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Fructosa/análogos & derivados , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Fármacos Neuroprotectores/uso terapéutico , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Fructosa/uso terapéutico , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Hipoxia/patología , Estudios Longitudinales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Ratas , Ratas Sprague-Dawley , Topiramato
5.
Neuron ; 39(1): 133-46, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12848938

RESUMEN

The ability to detect salt is critical for the survival of terrestrial animals. Based on amiloride-dependent inhibition, the receptors that detect salt have been postulated to be DEG/ENaC channels. We found the Drosophila DEG/ENaC genes Pickpocket11 (ppk11) and Pickpocket19 (ppk19) expressed in the larval taste-sensing terminal organ and in adults on the taste bristles of the labelum, the legs, and the wing margins. When we disrupted PPK11 or PPK19 function, larvae lost their ability to discriminate low concentrations of Na(+) or K(+) from water, and the electrophysiologic responses to low salt concentrations were attenuated. In both larvae and adults, disrupting PPK11 or PPK19 affected the behavioral response to high salt concentrations. In contrast, the response of larvae to sucrose, pH 3, and several odors remained intact. These results indicate that the DEG/ENaC channels PPK11 and PPK19 play a key role in detecting Na(+) and K(+) salts.


Asunto(s)
Drosophila/genética , Neuronas Aferentes/fisiología , Sales (Química) , Canales de Sodio/genética , Gusto/genética , Amilorida/farmacología , Secuencia de Aminoácidos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Electrofisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Larva/fisiología , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa
6.
Sci STKE ; 2006(356): re12, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-17033045

RESUMEN

Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.


Asunto(s)
Epilepsias Parciales/etiología , Modelos Neurológicos , Neuronas/metabolismo , Transducción de Señal , Animales , Astrocitos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Modelos Animales de Enfermedad , Epilepsias Parciales/genética , Neuronas/enzimología , Proteínas Tirosina Quinasas/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Glutamato/metabolismo
7.
Biochemistry ; 46(29): 8485-97, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17602661

RESUMEN

Ca2+ influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor triggers activation and postsynaptic accumulation of Ca2+/calmodulin-dependent kinase II (CaMKII). CaMKII, calmodulin, and alpha-actinin directly bind to the short membrane proximal C0 domain of the C-terminal region of the NMDA receptor NR1 subunit. In a negative feedback loop, calmodulin mediates Ca2+-dependent inactivation of the NMDA receptor by displacing alpha-actinin from NR1 C0 upon Ca2+ influx. We show that Ca2+-depleted calmodulin and alpha-actinin simultaneously bind to NR1 C0. Upon addition of Ca2+, calmodulin dislodges alpha-actinin. Either the N- or C-terminal half of calmodulin is sufficient for Ca2+-induced displacement of alpha-actinin. Whereas alpha-actinin directly antagonizes CaMKII binding to NR1 C0, the addition of Ca2+/calmodulin shifts binding of NR1 C0 toward CaMKII by displacing alpha-actinin. Displacement of alpha-actinin results in the simultaneous binding of calmodulin and CaMKII to NR1 C0. Our results reveal an intricate mechanism whereby Ca2+ functions to govern the complex interactions between the two most prevalent signaling molecules in synaptic plasticity, the NMDA receptor and CaMKII.


Asunto(s)
Actinina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Estructura Terciaria de Proteína , Ratas , Receptores de N-Metil-D-Aspartato/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 101(17): 6752-7, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15082829

RESUMEN

Acid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway for Ca(2+) entry and elevated [Ca(2+)](c) in wild-type, but not ASIC1(-/-), hippocampal neurons. Acid application also raised [Ca(2+)](c) and evoked Ca(2+) currents in heterologous cells expressing ASIC1a. Although ASIC2a is also expressed in central neurons, neither ASIC2a homomultimeric channels nor ASIC1a/2a heteromultimers showed H(+)-activated [Ca(2+)](c) elevation or Ca(2+) currents. Because extracellular acidosis accompanying cerebral ischemia contributes to neuronal injury, we tested the effect of acidosis on cell death measured as lactate dehydrogenase release. Eliminating ASIC1a from neurons or treating ASIC1a-expressing cells with the ASIC blocker amiloride attenuated acidosis-induced cell injury. These results indicate that ASIC1a provides a non-voltage-gated pathway for Ca(2+) to enter neurons. Thus, it may provide a target for modulation of [Ca(2+)](c).


Asunto(s)
Acidosis/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Acidosis/fisiopatología , Animales , Células CHO , Células COS , Cricetinae , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/fisiología , L-Lactato Deshidrogenasa/metabolismo , Neuronas/enzimología , Neuronas/fisiología , Técnicas de Placa-Clamp
10.
J Biol Chem ; 279(45): 46962-8, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15317815

RESUMEN

The acid-sensing ion channel-3 (ASIC3) is a degenerin/epithelial sodium channel expressed in the peripheral nervous system. Previous studies indicate that it participates in the response to mechanical and painful stimuli, perhaps contributing to mechanoreceptor and/or H+ -gated nociceptor function. ASIC3 subunits contain intracellular N and C termini that may control channel localization and function. We found that a PDZ-binding motif at the ASIC3 C terminus interacts with four different proteins that contain PDZ domains: PSD-95, Lin-7b, MAGI-1b, and PIST. ASIC3 and these interacting proteins were expressed in dorsal root ganglia and spinal cord, and PSD-95 co-precipitated ASIC3 from spinal cord. When expressed in heterologous cells, PSD-95 reduced the amplitude of ASIC3 acid-evoked currents, whereas Lin-7b increased current amplitude. PSD-95 and Lin-7b altered current density by decreasing or increasing, respectively, the amount of ASIC3 on the cell surface. The finding that multiple PDZ-containing proteins bind ASIC3 and can influence its presence in the plasma membrane suggests that they may play an important role in the contribution of ASIC3 to nociception and mechanosensation.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Protones , Canales de Sodio/química , Canales Iónicos Sensibles al Ácido , Secuencias de Aminoácidos , Animales , Biotinilación , Células CHO , Células COS , Membrana Celular/metabolismo , Cricetinae , ADN/metabolismo , Homólogo 4 de la Proteína Discs Large , Electrofisiología , Ganglios Espinales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Guanilato-Quinasas , Humanos , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/metabolismo , Distribución Tisular , Transfección , Técnicas del Sistema de Dos Híbridos
11.
J Biol Chem ; 277(50): 48441-8, 2002 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-12379661

RESUMEN

Ca(2+) influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor leads to activation and postsynaptic accumulation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and ultimately to long term potentiation, which is thought to be the physiological correlate of learning and memory. The NMDA receptor also serves as a CaMKII docking site in dendritic spines with high affinity binding sites located on its NR1 and NR2B subunits. We demonstrate that high affinity binding of CaMKII to NR1 requires autophosphorylation of Thr(286). This autophosphorylation reduces the off rate to a level (t(12) = approximately 23 min) that is similar to that observed for dissociation of the T286D mutant CaMKII (t(12) = approximately 30 min) from spines after its glutamate-induced accumulation (Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., and Meyer, T. (2000) Nat. Neurosci. 3, 881-886). CaMKII as well as the previously identified NR1 binding partners calmodulin and alpha-actinin bind to the short C-terminal portion of the C0 region of NR1. Like Ca(2+)/calmodulin, autophosphorylated CaMKII competes with alpha-actinin-2 for binding to NR1. We conclude that the NR1 C0 region is a key site for recruiting CaMKII to the postsynaptic site, where it may act in concert with calmodulin to modulate the stimulatory role of alpha-actinin interaction with the NMDA receptor.


Asunto(s)
Actinina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Fosforilación , Unión Proteica , Spodoptera
12.
Proc Natl Acad Sci U S A ; 100(4): 2029-34, 2003 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-12578970

RESUMEN

The acid-sensing ion channel-1 (ASIC1) contributes to synaptic plasticity and may influence the response to cerebral ischemia and acidosis. We found that cAMP-dependent protein kinase phosphorylated heterologously expressed ASIC1 and endogenous ASIC1 in brain slices. ASIC1 also showed significant phosphorylation under basal conditions. Previous studies showed that the extreme C-terminal residues of ASIC1 bind the PDZ domain of the protein interacting with C-kinase-1 (PICK1). We found that protein kinase A phosphorylation of Ser-479 in the ASIC1 C terminus interfered with PICK1 binding. In contrast, minimizing phosphorylation or mutating Ser-479 to Ala enhanced PICK1 binding. Phosphorylation-dependent disruption of PICK1 binding reduced the cellular colocalization of ASIC1 and PICK1. Thus, the ASIC1 C terminus contains two sites that influence its binding to PICK1. Regulation of this interaction by phosphorylation provides a mechanism to control the cellular localization of ASIC1.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas Nucleares/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Células COS , Proteínas de Ciclo Celular , Hipocampo/citología , Hipocampo/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neuronas/metabolismo , Fosforilación , Unión Proteica
13.
Proc Natl Acad Sci U S A ; 101(10): 3621-6, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-14988500

RESUMEN

The acid-sensing ion channel 1a (ASIC1a) is abundantly expressed in the amygdala complex and other brain regions associated with fear. Studies of mice with a disrupted ASIC1 gene suggested that ASIC1a may contribute to learned fear. To test this hypothesis, we generated mice overexpressing human ASIC1a by using the pan-neuronal synapsin 1 promoter. Transgenic ASIC1a interacted with endogenous mouse ASIC1a and was distributed to the synaptosomal fraction of brain. Transgenic expression of ASIC1a also doubled neuronal acid-evoked cation currents. The amygdala showed prominent expression, and overexpressing ASIC1a enhanced fear conditioning, an animal model of acquired anxiety. These data raise the possibility that ASIC1a and H(+)-gated currents may contribute to the development of abnormal fear and to anxiety disorders in humans.


Asunto(s)
Miedo/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/genética , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Amígdala del Cerebelo/metabolismo , Animales , Secuencia de Bases , Encéfalo/metabolismo , Condicionamiento Psicológico , ADN Recombinante/genética , Expresión Génica , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Recombinantes/metabolismo , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA