Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 102: 21-37, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28237315

RESUMEN

Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Lisosomas/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Proteínas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Lisosomas/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Enfermedad de la Neurona Motora/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Proteínas/genética , Médula Espinal/metabolismo , Médula Espinal/patología
2.
Neurobiol Aging ; 101: 181-186, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33626479

RESUMEN

Neuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1G93A mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production. Deletion of S100a9 in Alzheimer's disease mouse models showed a positive outcome, reducing pathology. We now assessed its role in ALS. Unexpectedly, our results show that deleting S100a9 in hSOD1G93A ALS mice had no impact on mouse survival, but rather accelerated symptoms with no impact on microglial activation and motor neuron survival, suggesting that blocking S100-A9 would not be a valuable strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Calgranulina B/genética , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina , Superóxido Dismutasa-1 , Animales , Calgranulina B/metabolismo , Modelos Animales de Enfermedad , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación , Ratones , Microglía/metabolismo , Superóxido Dismutasa-1/metabolismo , Sobrevida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA