Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 46(18): 4702-4705, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525086

RESUMEN

We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8×10-13τ-1/2 for times less than 100 s and a flicker noise floor of 1×10-14 out to 6000 s. At long integration times, the instability is limited by variations in optical probe power and the ac Stark shift. The retrace was measured to 5.7×10-13 after 30 h of dormancy. Such a simple, yet high-performance optical standard could be suitable as an accurate realization of the meter or, if coupled with an optical frequency comb, as a compact atomic clock comparable to a hydrogen maser.

2.
Phys Rev Lett ; 123(7): 073202, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31491125

RESUMEN

We demonstrate Ramsey-Bordé (RB) atom interferometry for high performance laser stabilization with fractional frequency instability <2×10^{-16} for timescales between 10 and 1000s. The RB spectroscopy laser interrogates two counterpropagating ^{40}Ca beams on the ^{1}S_{0}-^{3}P_{1} transition at 657 nm, yielding 1.6 kHz linewidth interference fringes. Fluorescence detection of the excited state population is performed on the (4s4p) ^{3}P_{1}-(4p^{2}) ^{3}P_{0} transition at 431 nm. Minimal thermal shielding and no vibration isolation are used. These stability results surpass performance from other thermal atomic or molecular systems by 1 to 2 orders of magnitude, and further improvements look feasible.

3.
Phys Rev Lett ; 123(17): 173201, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702265

RESUMEN

We report on the first timescale based entirely on optical technology. Existing timescales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. We combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate ^{87}Sr lattice clock to form a timescale that outperforms them all. Our timescale accumulates an estimated time error of only 48±94 ps over 34 days of operation. Our analysis indicates that this timescale is capable of reaching a stability below 1×10^{-17} after a few months of averaging, making timekeeping at the 10^{-18} level a realistic prospect.

4.
Opt Express ; 24(13): 14513-24, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27410604

RESUMEN

We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the 10-11 level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of 103 to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of 4 × 104 Hz2/Hz at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 Hz2/Hz at 100 kHz offset. The corresponding Allan deviation is ≤2 × 10-11 for averaging times spanning 10-4 to 103 s. By optically dividing the signal of the laser down to microwave frequencies, we generate an RF signal at 2 GHz with phase noise at the level of -76 dBc/Hz and -140 dBc/Hz at offset frequencies of 10 Hz and 10 kHz, respectively.

5.
Science ; 368(6493): 889-892, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32439794

RESUMEN

Optical atomic clocks are poised to redefine the Système International (SI) second, thanks to stability and accuracy more than 100 times better than the current microwave atomic clock standard. However, the best optical clocks have not seen their performance transferred to the electronic domain, where radar, navigation, communications, and fundamental research rely on less stable microwave sources. By comparing two independent optical-to-electronic signal generators, we demonstrate a 10-gigahertz microwave signal with phase that exactly tracks that of the optical clock phase from which it is derived, yielding an absolute fractional frequency instability of 1 × 10-18 in the electronic domain. Such faithful reproduction of the optical clock phase expands the opportunities for optical clocks both technologically and scientifically for time dissemination, navigation, and long-baseline interferometric imaging.

6.
Phys Rev Appl ; 12(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33102625

RESUMEN

A time scale is a procedure for accurately and continuously marking the passage of time. It is exemplified by Coordinated Universal Time (UTC) and provides the backbone for critical navigation tools such as the Global Positioning System. Present time scales employ microwave atomic clocks, whose attributes can be combined and averaged in a manner such that the composite is more stable, accurate, and reliable than the output of any individual clock. Over the past decade, clocks operating at optical frequencies have been introduced that are orders of magnitude more stable than any microwave clock. However, in spite of their great potential, these optical clocks cannot be operated continuously, which makes their use in a time scale problematic. We report the development of a hybrid microwave-optical time scale, which only requires the optical clock to run intermittently while relying upon the ensemble of microwave clocks to serve as the flywheel oscillator. The benefit of using a clock ensemble as the flywheel oscillator instead of a single clock can be understood by the Dick-effect limit. This time scale demonstrates for the first time subnanosecond accuracy over a few months, attaining a fractional frequency stability of 1.45 × 10-16 at 30 days and reaching the 10-17 decade at 50 days, with respect to UTC. This time scale significantly improves the accuracy in timekeeping and could change the existing time-scale architectures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA