Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696443

RESUMEN

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Virus ARN/fisiología , ARN de Planta/antagonistas & inhibidores , ARN Interferente Pequeño/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Sustitución de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiología , Biología Computacional/métodos , Cucumovirus/fisiología , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Mutación Puntual , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Tobamovirus/fisiología , Tymovirus/fisiología
2.
Plant Physiol ; 169(2): 1266-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286717

RESUMEN

Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Interferencia de ARN , Transgenes , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Plantas Modificadas Genéticamente , Poli A/genética , Poli A/metabolismo , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(6): 2389-94, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23335630

RESUMEN

DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , ARN Interferente Pequeño/genética
4.
Nature ; 451(7176): 359-62, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202663

RESUMEN

Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.


Asunto(s)
Empalme Alternativo , Células Eucariotas/metabolismo , Intrones/genética , Paramecium/genética , Biosíntesis de Proteínas , Animales , Secuencia de Bases , Codón de Terminación/genética , Biología Computacional , Etiquetas de Secuencia Expresada , Genes Protozoarios/genética , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Estabilidad del ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo
5.
Trends Genet ; 25(8): 344-50, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19596481

RESUMEN

Several classes of non-protein-coding RNAs have recently been identified as epigenetic regulators of developmental genome rearrangements in ciliates, providing an interesting insight into the role of genome-wide transcription. In these unicellular eukaryotes, extensive rearrangements of the germline genome occur during the development of a new somatic macronucleus from the germline micronucleus. Rearrangement patterns are not dictated by the germline sequence, but reproduce the pre-existing rearrangements of the maternal somatic genome, implying a homology-dependent global comparison of germline and somatic genomes. We review recent evidence showing that this is achieved by a natural genomic subtraction, computed by pairing interactions between meiosis-specific, germline scnRNAs (small RNAs that resemble metazoan piRNAs) and longer non-coding transcripts from the somatic genome. We focus on current models for the RNA-based mechanisms enabling the cell to recognize the germline sequences to be eliminated from the somatic genome and to maintain an epigenetic memory of rearrangement patterns across sexual generations.


Asunto(s)
Cilióforos/crecimiento & desarrollo , Cilióforos/genética , Reordenamiento Génico , Genoma/genética , ARN no Traducido/genética , Animales , Epigénesis Genética , Células Germinativas/metabolismo
6.
Nature ; 444(7116): 171-8, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17086204

RESUMEN

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma de Protozoos/genética , Genómica , Paramecium tetraurelia/genética , Animales , Células Eucariotas/metabolismo , Genes Duplicados/genética , Genes Protozoarios/genética , Datos de Secuencia Molecular , Filogenia
7.
Nucleic Acids Res ; 37(3): 903-15, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19103667

RESUMEN

Distinct small RNA pathways are involved in the two types of homology-dependent effects described in Paramecium tetraurelia, as shown by a functional analysis of Dicer and Dicer-like genes and by the sequencing of small RNAs. The siRNAs that mediate post-transcriptional gene silencing when cells are fed with double-stranded RNA (dsRNA) were found to comprise two subclasses. DCR1-dependent cleavage of the inducing dsRNA generates approximately 23-nt primary siRNAs from both strands, while a different subclass of approximately 24-nt RNAs, characterized by a short untemplated poly-A tail, is strictly antisense to the targeted mRNA, suggestive of secondary siRNAs that depend on an RNA-dependent RNA polymerase. An entirely distinct pathway is responsible for homology-dependent regulation of developmental genome rearrangements after sexual reproduction. During early meiosis, the DCL2 and DCL3 genes are required for the production of a highly complex population of approximately 25-nt scnRNAs from all types of germline sequences, including both strands of exons, introns, intergenic regions, transposons and Internal Eliminated Sequences. A prominent 5'-UNG signature, and a minor fraction showing the complementary signature at positions 21-23, indicate that scnRNAs are cleaved from dsRNA precursors as duplexes with 2-nt 3' overhangs at both ends, followed by preferential stabilization of the 5'-UNG strand.


Asunto(s)
Meiosis/genética , Paramecium tetraurelia/genética , Interferencia de ARN , ARN Interferente Pequeño/química , Animales , Clonación Molecular , Proteínas de la Membrana/genética , Paramecium tetraurelia/metabolismo , Poliadenilación , Proteínas Protozoarias/genética , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética
8.
Nucleic Acids Res ; 36(10): 3244-51, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18420657

RESUMEN

Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.


Asunto(s)
ADN Protozoario/metabolismo , Paramecium tetraurelia/genética , Secuencia Rica en At , Animales , ADN Protozoario/química , Epigénesis Genética , Macronúcleo/genética , Modelos Genéticos , Conformación de Ácido Nucleico , Paramecium tetraurelia/crecimiento & desarrollo , Paramecium tetraurelia/metabolismo , Mutación Puntual
9.
Genes Dev ; 22(11): 1501-12, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18519642

RESUMEN

The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.


Asunto(s)
Paramecium tetraurelia/genética , ARN Interferente Pequeño/farmacología , ARN no Traducido , Animales , Línea Celular , ADN Protozoario , Reordenamiento Génico
10.
Fungal Genet Biol ; 41(11): 982-97, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15465387

RESUMEN

NADPH oxidases are enzymes that produce reactive oxygen species (ROS) using electrons derived from intracellular NADPH. In plants and mammals, ROS have been proposed to be second messengers that signal defence responses or cell proliferation. By inactivating PaNox1 and PaNox2, two genes encoding NADPH oxidases, we demonstrate the crucial role of these enzymes in the control of two key steps of the filamentous fungus Podospora anserina life cycle. PaNox1 mutants are impaired in the differentiation of fruiting bodies from their progenitor cells, and the deletion of the PaNox2 gene specifically blocks ascospore germination. Furthermore, we show that PaNox1 likely acts upstream of PaASK1, a MAPKKK previously implicated in stationary phase differentiation and cell degeneration. Using nitro blue tetrazolium (NBT) and diaminobenzidine (DAB) assays, we detect a regulated secretion of both superoxide and peroxide during P. anserina vegetative growth. In addition, two oxidative bursts are shown to occur during fruiting body development and ascospore germination. Analysis of mutants establishes that PaNox1, PaNox2, and PaASK1, as well as a still unknown additional source of ROS, modulate these secretions. Altogether, our data point toward a role for NADPH oxidases in signalling fungal developmental transitions with respect to nutrient availability. These enzymes are conserved in other multicellular eukaryotes, suggesting that early eukaryotes were endowed with a redox network used for signalling purposes.


Asunto(s)
NADPH Oxidasas/metabolismo , Podospora/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia de Consenso , Cartilla de ADN , Datos de Secuencia Molecular , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Filogenia , Podospora/enzimología , Podospora/genética , Reacción en Cadena de la Polimerasa , Reproducción/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA