Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cytotherapy ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38661611

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell products are commonly generated using lentiviral vector (LV) transduction. Optimal final formulation buffer (FFB) supporting LV stability during cryostorage is crucial for cost-effective manufacturing. METHODS: To identify the ideal LV FFB composition for ex vivo CAR-T production, primary human T cells were transduced with vesicular stomatitis virus G-protein (VSV-G) -pseudotyped LVs (encoding a reporter gene or an anti-CD19-CAR). The formulations included phosphate-buffered saline (PBS), HEPES, or X-VIVOTM 15, and stabilizing excipients. The functional and viral particle titers and vector copy number were measured after LV cryopreservation and up to 24 h post-thaw incubation. CAR-Ts were produced with LVs in selected FFBs, and the resulting cells were characterized. RESULTS: Post-cryopreservation, HEPES-based FFBs provided higher LV functional titers than PBS and X-VIVOTM 15, and 10% trehalose-20 mM MgCl2 improved LV transduction efficiency in PBS and 50 mM HEPES. Thawed vectors remained stable at +4°C, while a ≤ 25% median decrease in the functional titer occurred during 24 h at room temperature. Tested excipients did not enhance LV post-thaw stability. CAR-Ts produced using LVs cryopreserved in 10% trehalose- or sucrose-20 mM MgCl2 in 50 mM HEPES showed comparable transduction rates, cell yield, viability, phenotype, and in vitro functionality. CONCLUSION: A buffer consisting of 10% trehalose-20 mM MgCl2 in 50 mM HEPES provided a feasible FFB to cryopreserve a VSV-G -pseudotyped LV for CAR-T-cell production. The LVs remained relatively stable for at least 24 h post-thaw, even at ambient temperatures. This study provides insights into process development, showing LV formulation data generated using the relevant target cell type for CAR-T-cell manufacturing.

2.
NMR Biomed ; 33(4): e4250, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31909530

RESUMEN

Hyperpolarised [1-13 C]pyruvate MRI has shown promise in monitoring therapeutic efficacy in a number of cancers including glioma. In this study, we assessed the pyruvate response to the lentiviral suicide gene therapy of herpes simplex virus-1 thymidine kinase with the prodrug ganciclovir (HSV-TK/GCV) in C6 rat glioma and compared it with traditional MR therapy markers. Female Wistar rats were inoculated with 106 C6 glioma cells. Treated animals received intratumoural lentiviral HSV-TK gene transfers on days 7 and 8 followed by 2-week GCV therapy starting on day 10. Animals were repeatedly imaged during therapy using volumetric MRI, diffusion and relaxation mapping, as well as metabolic [1-13 C]pyruvate MRS imaging. Survival (measured as time before animals reached a humane endpoint and were euthanised) was assessed up to day 30 posttherapy. HSV-TK/GCV gene therapy lengthened the median survival time from 12 to 25 days. This was accompanied by an apparent tumour growth arrest, but no changes in diffusion or relaxation parameters in treated animals. The metabolic response was more evident in the case-by-case analysis than in the group-level analysis. Treated animals also showed a 37 ± 15% decrease (P < 0.05, n = 5) in lactate-to-pyruvate ratio between therapy weeks, whereas a 44 ± 18% increase (P < 0.05, n = 6) was observed in control animals. Hyperpolarised [1-13 C]pyruvate MRI can offer complementary metabolic information to traditional MR methods to give a more comprehensive picture of the slowly developing gene therapy response. This may benefit the detection of the successful therapy response in patients.


Asunto(s)
Isótopos de Carbono/química , Genes Transgénicos Suicidas , Terapia Genética , Glioma/genética , Glioma/terapia , Lentivirus/genética , Ácido Pirúvico/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Ganciclovir/uso terapéutico , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Humanos , Imagen por Resonancia Magnética , Ratas Wistar , Agua
3.
Nature ; 498(7455): 511-5, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23728303

RESUMEN

Rev-Erb-α and Rev-Erb-ß are nuclear receptors that regulate the expression of genes involved in the control of circadian rhythm, metabolism and inflammatory responses. Rev-Erbs function as transcriptional repressors by recruiting nuclear receptor co-repressor (NCoR)-HDAC3 complexes to Rev-Erb response elements in enhancers and promoters of target genes, but the molecular basis for cell-specific programs of repression is not known. Here we present evidence that in mouse macrophages Rev-Erbs regulate target gene expression by inhibiting the functions of distal enhancers that are selected by macrophage-lineage-determining factors, thereby establishing a macrophage-specific program of repression. Remarkably, the repressive functions of Rev-Erbs are associated with their ability to inhibit the transcription of enhancer-derived RNAs (eRNAs). Furthermore, targeted degradation of eRNAs at two enhancers subject to negative regulation by Rev-Erbs resulted in reduced expression of nearby messenger RNAs, suggesting a direct role of these eRNAs in enhancer function. By precisely defining eRNA start sites using a modified form of global run-on sequencing that quantifies nascent 5' ends, we show that transfer of full enhancer activity to a target promoter requires both the sequences mediating transcription-factor binding and the specific sequences encoding the eRNA transcript. These studies provide evidence for a direct role of eRNAs in contributing to enhancer functions and suggest that Rev-Erbs act to suppress gene expression at a distance by repressing eRNA transcription.


Asunto(s)
Regulación hacia Abajo/genética , Elementos de Facilitación Genéticos/genética , Macrófagos/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transcripción Genética/genética , Alelos , Animales , Secuencia de Bases , Sitios de Unión , Técnicas de Silenciamiento del Gen , Ratones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética
4.
Circ Res ; 117(3): 289-99, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26085133

RESUMEN

RATIONALE: Hyperlipidemia and type 2 diabetes mellitus (T2DM) severely impair adaptive vascular growth responses in ischemic muscles. This is largely attributed to dysregulated gene expression, although details of the changes are unknown. OBJECTIVE: To define the role of promoter methylation in adaptive vascular growth in hyperlipidemia (LDLR(-/-)ApoB(100/100)) and T2DM (IGF-II/LDLR(-/-)ApoB(100/100)) mouse models of hindlimb ischemia. METHODS AND RESULTS: Unilateral hindlimb ischemia was induced by ligating femoral artery. Perfusion was assessed using ultrasound, and capillary and arteriole parameters were assessed using immunohistochemistry. Genome-wide methylated DNA sequencing was performed with DNA isolated from ischemic muscle, tissue macrophages (Mϕs), and endothelial cells. Compared with the controls, hyperlipidemia and T2DM mice showed impaired perfusion recovery, which was associated with impaired angiogenesis and arteriogenesis. Genome-wide proximal promoter DNA methylation analysis suggested differential patterns of methylation in Mϕ genes in ischemic muscles. Classically activated M1-Mϕ gene promoters, including Cfb, Serping1, and Tnfsf15, were significantly hypomethylated, whereas alternatively activated M2-Mϕ gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes, were significantly hypermethylated in Mϕs isolated from hyperlipidemia and T2DM ischemic muscles compared with controls. These results combined with mRNA expression and immunohistochemistry showed the predominance of proinflammatory M1-Mϕs, compared with anti-inflammatory and proangiogenic M2-Mϕs in hyperlipidemia and T2DM ischemic muscles. CONCLUSIONS: We found significant promoter hypomethylation of genes typical for proinflammatory M1-Mϕs and hypermethylation of anti-inflammatory, proangiogenic M2-Mϕ genes in hyperlipidemia and T2DM ischemic muscles. Epigenetic alterations modify Mϕ phenotype toward proinflammatory M1 as opposed to anti-inflammatory, proangiogenic, and tissue repair M2 phenotype, which may contribute to the impaired adaptive vascular growth under these pathological conditions.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Miembro Posterior/irrigación sanguínea , Hiperlipidemias/genética , Isquemia/patología , Macrófagos/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/genética , Regiones Promotoras Genéticas , Daño por Reperfusión/genética , Adaptación Fisiológica , Animales , Apolipoproteína B-100/genética , Arteriolas/patología , Capilares/patología , Grasas de la Dieta/toxicidad , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo , Miembro Posterior/diagnóstico por imagen , Inflamación , Isquemia/diagnóstico por imagen , Isquemia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , Receptores de LDL/deficiencia , Reperfusión , Daño por Reperfusión/patología , Ultrasonografía
6.
J Gene Med ; 14(3): 182-90, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22287362

RESUMEN

BACKGROUND: Vascular endothelial growth factors (VEGFs) are central mediators in vascular development and lymphangiogenesis. VEGF-D contributes to the growth and formation of blood and lymphatic vessels, although its biological role is still somewhat unclear. METHODS: Transgenic mice, which express the mature form of human VEGF-D under endothelium-specific Tie1 promoter, were produced by the lentiviral perivitelline-injection method. The mice were followed up to generation F(5) and the effect of the transgene was analyzed. RESULTS: Transgenic mice had a high expression of human (h)VEGF-D in the endothelium in several tissues, such as kidney, liver, lung and spleen. However, transgenic mice developed tumors in lungs, kidneys, liver, mammary glands and lymph nodes upon aging and their mortality was also increased as a result of other pathological conditions. Hind limb ischemia was surgically induced in these mice and they were analyzed 1, 2 and 3 weeks after the ischemia operation. No significant differences were found in hVEGF-D mRNA expression, the number of capillaries or tissue repair between ischemic transgenic mice and transgene negative littermates. CONCLUSIONS: It is concluded that targeted unregulated long-term expression of hVEGF-D in endothelium may not be useful and reduces the life span of transgenic mice.


Asunto(s)
Endotelio/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Neoplasias Experimentales/patología , Transgenes/genética , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo , Análisis de Varianza , Animales , Vectores Genéticos/genética , Miembro Posterior/patología , Humanos , Inmunohistoquímica , Lentivirus , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Regiones Promotoras Genéticas/genética , Receptor TIE-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
7.
J Gene Med ; 14(1): 35-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22162149

RESUMEN

BACKGROUND: Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. METHODS: Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. RESULTS: A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding ß-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. CONCLUSIONS: We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene.


Asunto(s)
Baculoviridae/genética , Técnicas de Transferencia de Gen , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/genética , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Capilares/crecimiento & desarrollo , Permeabilidad Capilar , Femenino , Técnicas de Transferencia de Gen/efectos adversos , Células Hep G2 , Humanos , Músculo Esquelético/patología , Perfusión , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Isoformas de Proteínas/genética , Conejos , Proteínas Recombinantes/biosíntesis , Transducción Genética , Resultado del Tratamiento
8.
Front Med (Lausanne) ; 9: 1052318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582287

RESUMEN

Gene therapy would greatly benefit from a method to regulate therapeutic gene expression temporally. Riboswitches are small RNA elements that have been studied for their potential use in turning transgene expression on or off by ligand binding. We compared several tetracycline and toyocamycin-inducible ON-riboswitches for a drug responsive transgene expression. The tetracycline-dependent K19 riboswitch showed the best control and we successfully applied it to different transgenes. The induction of gene expression was 6- to 10-fold, dose-dependent, reversible, and occurred within hours after the addition of a clinically relevant tetracycline dose, using either plasmid or adeno-associated virus (AAV) vectors. To enhance the switching capacity, we further optimized the gene cassette to control the expression of a potential therapeutic gene for cardiovascular diseases, VEGF-B. Using two or three riboswitches simultaneously reduced leakiness and improved the dynamic range, and a linker sequence between the riboswitches improved their functionality. The riboswitch function was promoter-independent, but a post-transcriptional WPRE element in the expression cassette reduced its functionality. The optimized construct was a dual riboswitch at the 3' end of the transgene with a 100 bp linker sequence. Our study reveals significant differences in the function of riboswitches and provides important aspects on optimizing expression cassette designs. The findings will benefit further research and development of riboswitches.

9.
J Invertebr Pathol ; 107 Suppl: S106-12, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21784225

RESUMEN

Baculoviruses have proven capacity for the production of recombinant proteins including virus-like particles and as viral vectors. Recent progress in preclinical studies suggest that baculoviruses have potential as new vectors for gene therapy but so far no clinical trials have been performed. To date, no specific guidelines for the use of baculoviruses as human gene therapy vectors exist but researchers can utilize existing guidelines made for other biological products. Because of the long history of research on baculoviruses, a lot of knowledge has been obtained that forms a good basis for the gene therapy development process. This article gives an overview of the current status of the application of baculovirus vectors in gene therapy and summarizes some of the challenges to overcome before the first clinical trials with baculoviruses can be accomplished.


Asunto(s)
Baculoviridae/genética , Terapia Genética/normas , Vectores Genéticos/normas , Ensayos Clínicos como Asunto , Terapia Genética/métodos , Guías como Asunto , Humanos , Control de Calidad
10.
Biotechnol J ; 16(1): e2000020, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32971565

RESUMEN

The accelerating development of gene therapy from research towards clinical trials and beyond has elevated the demand for practical viral vector-manufacturing solutions. The use of disposable upstream technology is gaining traction in clinical manufacturing. Packed-bed or fixed-bed reactors, where column is packed with immobilized biocatalyst particles providing surface to constrain the cells in a particular region of the reactor, have been widely used in bioprocessing applications since mid-1900s. However, the world's first single-use, fully integrated, high cell density, fixed-bed bioreactor was launched only approximately a decade ago. By now, several single-use, fixed-bed technology solutions have been developed in a small scale. Scaling-up the manufacturing can be challenging and for commercial-scale manufacturing, there is practically only one single-use, good manufacturing practice-compliant option available. This study reviews the latest, fully disposable, fixed-bed bioreactors; compares the virus production in the different systems; and discusses important manufacturing cost-related topics. It is predicted that single-use, fixed-bed bioreactors will receive even more attention in the field of viral vector manufacturing and commercialization, especially with the need for higher virus titers and virus yields.


Asunto(s)
Reactores Biológicos , Vectores Genéticos , Cultivo de Virus , Terapia Genética
11.
Viruses ; 13(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069520

RESUMEN

Virus particle concentration is a critical piece of information for virology, viral vaccines and gene therapy research. We tested a novel nanoparticle counting device, "Videodrop", for its efficacy in titering and characterization of virus particles. The Videodrop nanoparticle counter is based on interferometric light microscopy (ILM). The method allows the detection of particles under the diffraction limit capabilities of conventional light microscopy. We analyzed lenti-, adeno-, and baculovirus samples in different concentrations and compared the readings against traditional titering and characterization methods. The tested Videodrop particle counter is especially useful when measuring high-concentration purified virus preparations. Certain non-purified sample types or small viruses may be impossible to characterize or may require the use of standard curve or background subtraction methods, which increases the duration of the analysis. Together, our testing shows that Videodrop is a reasonable option for virus particle counting in situations where a moderate number of samples need to be analyzed quickly.


Asunto(s)
Microscopía de Interferencia/métodos , Virión/aislamiento & purificación , Virus/clasificación , Virus/aislamiento & purificación , Microscopía de Interferencia/instrumentación , Carga Viral/métodos
12.
Sci Rep ; 11(1): 21698, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737404

RESUMEN

With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.


Asunto(s)
Proteínas de la Cápside/metabolismo , Dependovirus/metabolismo , Proteínas de la Membrana/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos , Humanos , Proteínas de la Membrana/fisiología , Plásmidos , Proteínas Virales/genética , Virión/metabolismo , Ensamble de Virus , Replicación Viral
13.
Hum Gene Ther ; 31(5-6): 376-384, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075423

RESUMEN

We have previously produced viral vectors (lentiviral vector, adenoviral vector, and adeno-associated viral vector) in small and in commercial scale in adherent cells using Pall fixed-bed iCELLis® bioreactor. Recently, a company called Univercells has launched a new fixed-bed bioreactor with the same cell growth surface matrix material, but with different fixed-bed structure than is used in iCELLis bioreactor. We sought to compare the new scale-X™ hydro bioreactor (2.4 m2) and iCELLis Nano system (2.67 m2) to see if the difference has any effect on cell growth or lentiviral vector and adenoviral vector productivity. Runs were performed using parameters optimized for viral vector production in iCELLis Nano bioreactor. Cell growth was monitored by counting nuclei, as well as by following glucose consumption and lactate production. In both bioreactor systems, cells grew well, and the cell distribution was found quite homogeneous in scale-X bioreactor. Univercells scale-X bioreactor was proven to be at least equally efficient or even improved in both lentiviral vector and adenoviral vector production. Based on the results, the same protocol and parameters used in viral vector production in iCELLis bioreactor can also be successfully used for the production in scale-X bioreactor system.


Asunto(s)
Adenoviridae/metabolismo , Vectores Genéticos/biosíntesis , Lentivirus/metabolismo , Cultivo de Virus/métodos , Adenoviridae/crecimiento & desarrollo , Reactores Biológicos , Terapia Genética , Células HEK293 , Células HeLa , Humanos , Lentivirus/crecimiento & desarrollo
14.
Mol Ther Methods Clin Dev ; 17: 717-730, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32346549

RESUMEN

The interest in lentiviral vectors (LVs) has increased prominently for gene therapy applications, but few have reached the later stages of clinical trials. The main challenge has remained in scaling up the manufacturing process for the fragile vector to obtain high titers for in vivo usage. We have previously scaled up the LV production to iCELLis 500, being able to produce up to 180 L of harvest material in one run with perfusion. The following challenge considers the purification and concentration of the product to meet titer and purity requirements for clinical use. We have developed a downstream process, beginning with clarification, buffer exchange, and concentration, by tangential flow filtration. This is followed by a purification step using single membrane-based anion exchange chromatography and final formulation with tangential flow filtration. Different materials and conditions were compared to optimize the process, especially for the chromatography step that has been the bottleneck in lentiviral vector purification scale-up. The final infectious titer of the lentiviral vector product manufactured using the optimized scale-up process was determined to be 1.97 × 109 transducing units (TU)/mL, which can be considered as a high titer for lentiviral vectors.

15.
Mol Ther Methods Clin Dev ; 15: 63-71, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31649956

RESUMEN

The therapeutic efficacy of a lentiviral vector (LV) expressing the herpes simplex virus thymidine kinase (HSV-TK) was studied in an immunocompetent rat glioblastoma model. Intraperitoneal ganciclovir injections (50 mg/kg/day) were administered for 14 consecutive days, resulting in reduced tumor volumes as monitored by MRI. Survival analyses revealed a significant improvement among the LV-expressing HSV-TK (LV-TK)/ganciclovir-treated animals when compared to non-treated control rats. However, a limiting factor in the use of LV has been the suboptimal small-scale production in flasks. Our aim during the translation phase, prior to entering the final pre-clinical and early clinical phases, was to develop a scalable, robust, and disposable manufacturing process for LV-TKs. We also aimed to minimize future process changes and enable production upscaling to make the process suitable for larger patient populations. The upstream process relies on fixed-bed iCELLis technology and transient plasmid transfection. This is the first time iCELLis 500 commercial-scale bioreactor was used for LV production. A testing strategy to determine the pharmacological activity of LV-TK drug product by measuring cell viability was developed, and the specificity of the potency assay was also proven. In this paper we focus on upstream process development while showing analytical development and the proof-of-concept of LV-TK functionality.

16.
Curr Gene Ther ; 17(3): 235-247, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982327

RESUMEN

BACKGROUND: The eye possesses unique anatomical features that make it a valuable target for gene therapy applications. OBJECTIVE: The aim of the current study was to compare transduction efficiency, safety and biodistribution of four viral vectors following intravitreal injection. METHOD: Adenovirus (AdV), Adeno-Associated Virus (AAV), Baculovirus (BV) and Lentivirus (LV) vectors encoding Green Fluorescent Protein (GFP) were injected bilaterally intravitreally into adult C57BL/6OlaHsd mice. Control mice received saline. Eyes and other organs were studied at multiple time points from 3 days to 6 months. Immunohistochemical stainings with retinal cell markers were performed to verify GFP-positive cells. Biodistribution in retina and various non-target tissues was studied using a qPCR method. Inflammatory responses and toxicity were investigated from cryostat eye sections and serum samples. RESULTS: AAV-injected eyes showed GFP expression both in inner and outer retinal cells from 7 days up to 6 months. LV eyes showed long lasting transgene expression mostly in retinal pigment epithelium whereas AdV transiently transduced mainly cells in the anterior chamber. In BV-injected eyes, GFP positivity was very low. qPCR results showed that AdV, AAV and LV spread into the optic nerve, but were below the detection limit in other organs. The strongest immune responses were evoked by intravitreal injections of AdV and BV. The highest concentration of anti-GFP IgG was detected in the AdV-treated group, whereas the AAV group showed the lowest concentration. Neither blood chemistry screen nor the number of apoptotic cells showed any differences between the viral vector and saline injected groups. CONCLUSION: Our findings show that intravitreal gene delivery is safe and feasible with AAV, AdV and lentivirus vectors.


Asunto(s)
Adenoviridae/genética , Baculoviridae/genética , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Lentivirus/genética , Epitelio Pigmentado de la Retina/patología , Animales , Células Cultivadas , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/patología , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/metabolismo , Distribución Tisular
17.
Elife ; 52016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27462873

RESUMEN

Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFß, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Piel/lesiones , Proteína smad3/metabolismo , Cicatrización de Heridas , Animales , Macrófagos/fisiología , Ratones , Transducción de Señal
18.
Hum Gene Ther ; 26(8): 560-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26176404

RESUMEN

Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.


Asunto(s)
Adenoviridae/fisiología , Cultivo de Virus , Reactores Biológicos , Proliferación Celular , Medios de Cultivo , Vectores Genéticos , Células HEK293 , Humanos , Replicación Viral
19.
Nucl Med Biol ; 41(1): 77-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24267054

RESUMEN

Viral vectors are central tools for gene therapy. Targeting of the vector to desired tissues followed by expression of the therapeutic gene forms one of the most critical points in effective therapy. In this study we used streptavidin-displaying lentivirus conjugated to biotinylated anti-epidermal growth factor receptor (EGFR) antibody (Cetuximab) to target vector specifically to ovarian tumors. Biodistribution of the targeted virus was studied in nude mice with orthotropic SKOV-3m human ovarian carcinoma xenografts. Radiolabeled antibodies were conjugated to streptavidin-displaying lentiviruses and biodistribution of the virus after the intravenous delivery to tumor-bearing mice was monitored up to 6 days using combined SPECT/CT imaging modality. Organ samples were collected post mortem and specific organ activities were measured. The integration of lentivirus vectors in collected tissue samples was analyzed using qPCR and the expression of green fluorescent protein (GFP)-transgene was tested by enzyme-linked immunosorbent assay. Our results showed that lentiviruses conjugated to Cetuximab (Cet-LV) or control human IgG (IgG-LV) accumulated mainly to the liver and spleen of the mice and to lower extent to lung, kidneys and tumors. Strikingly, in 50% of the mice injected with cetuximab-targeted lentivirus no tumor tissue was found, whereas the remaining half showed a significant decrease in tumor size. We hypothesize/present data that lentivirus-mediated INF-αß production together with tumor targeting could function as an effective antitumor treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Antineoplásicos/farmacocinética , Lentivirus/genética , Lentivirus/metabolismo , Animales , Antineoplásicos/uso terapéutico , Avidina/metabolismo , Biotinilación , Línea Celular Tumoral , Cetuximab , Femenino , Vectores Genéticos/genética , Humanos , Radioisótopos de Indio , Ratones , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Estreptavidina/genética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Transducción Genética
20.
Biomed Res Int ; 2014: 379340, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860818

RESUMEN

Rare-cutting endonucleases, such as the I-PpoI, can be used for the induction of double strand breaks (DSBs) in genome editing and targeted integration based on homologous recombination. For therapeutic approaches, the specificity and the pattern of off-target effects are of high importance in these techniques. For its applications, the endonuclease needs to be transported into the target cell nucleus, where the mechanism of transport may affect its function. Here, we have studied the lentiviral protein transduction of the integrase (IN)-PpoI fusion protein using the cis-packaging method. In genome-wide interaction studies, IN-fusion proteins were verified to bind their target sequence containing 28S ribosomal RNA (rRNA) genes with a 100-fold enrichment, despite the well-documented behavior of IN to be tethered into various genomic areas by host-cell factors. In addition, to estimate the applicability of the method, DSB-induced cytotoxic effects with different vector endonuclease configurations were studied in a panel of cells. Varying the amount and activity of endonuclease enabled the adjustment of ratio between the induced DSBs and transported DNA. In cell studies, certain cancerous cell lines were especially prone to DSBs in rRNA genes, which led us to test the protein transduction in a tumour environment in an in vivo study. In summary, the results highlight the potential of lentiviral vectors (LVVs) for the nuclear delivery of endonucleases.


Asunto(s)
Supervivencia Celular/genética , Endodesoxirribonucleasas/genética , Genoma/genética , Integrasa de VIH/genética , Lentivirus/genética , Proteínas Recombinantes de Fusión/toxicidad , Transducción Genética/métodos , Supervivencia Celular/efectos de los fármacos , Vectores Genéticos/genética , Células HeLa , Humanos , Edición de ARN/genética , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA