Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cereb Cortex ; 33(18): 10047-10065, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522285

RESUMEN

The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , Fibras Musgosas del Hipocampo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo
2.
Cell Mol Life Sci ; 79(11): 555, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251052

RESUMEN

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as ß-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2's extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Cricetinae , Cricetulus , Endosomas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo
3.
Cell Mol Life Sci ; 78(1): 93-116, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32613283

RESUMEN

The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Sistema Nervioso/metabolismo , Antígenos CD57/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Antígeno Lewis X/metabolismo , Regeneración Nerviosa , Sistema Nervioso/crecimiento & desarrollo , Plasticidad Neuronal , Oligosacáridos/metabolismo , Ácidos Siálicos/metabolismo
4.
Cereb Cortex ; 29(4): 1439-1459, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522129

RESUMEN

The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.


Asunto(s)
Encéfalo/fisiología , Proteína Tirosina Quinasa CSK/fisiología , Señalización del Calcio , Dendritas/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sinapsis/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Femenino , Masculino , Ratones Endogámicos C57BL , Cultivo Primario de Células
5.
Genomics ; 111(6): 1676-1686, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30465913

RESUMEN

Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Sinapsis/metabolismo , Transcriptoma/fisiología , Animales , Femenino , Regulación de la Expresión Génica , Hipocampo/citología , Masculino , Ratones , Neuronas/citología , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética
6.
J Cell Sci ; 128(15): 2816-29, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26101351

RESUMEN

The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macroarray and identified the kinesin light chain 1 (KLC1), a component of the kinesin-1 motor protein, as a binding partner of the intracellular domains of the two transmembrane isoforms of NCAM, NCAM140 and NCAM180. KLC1 binds to amino acids CGKAGPGA within the intracellular domain of NCAM and colocalizes with kinesin-1 in the Golgi compartment. Delivery of NCAM180 to the cell surface is increased in CHO cells and neurons co-transfected with kinesin-1. We further demonstrate that the p21-activated kinase 1 (PAK1) competes with KLC1 for binding to the intracellular domain of NCAM and contributes to the regulation of the membrane insertion of NCAM. Our results indicate that NCAM is delivered to the cell surface through a kinesin-1-mediated transport mechanism in a PAK1-dependent manner.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Cinesinas/metabolismo , Transporte de Proteínas/fisiología , Quinasas p21 Activadas/metabolismo , Animales , Células CHO , Moléculas de Adhesión Celular Neuronal/genética , Membrana Celular/metabolismo , Cricetulus , Aparato de Golgi/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuritas/fisiología , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño
7.
J Neurosci ; 35(4): 1739-52, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632147

RESUMEN

Changes in expression of the neural cell adhesion molecule 2 (NCAM2) have been proposed to contribute to neurodevelopmental disorders in humans. The role of NCAM2 in neuronal differentiation remains, however, poorly understood. Using genetically encoded Ca(2+) reporters, we show that clustering of NCAM2 at the cell surface of mouse cortical neurons induces submembrane [Ca(2+)] spikes, which depend on the L-type voltage-dependent Ca(2+) channels (VDCCs) and require activation of the protein tyrosine kinase c-Src. We also demonstrate that clustering of NCAM2 induces L-type VDCC- and c-Src-dependent activation of CaMKII. NCAM2-dependent submembrane [Ca(2+)] spikes colocalize with the bases of filopodia. NCAM2 activation increases the density of filopodia along neurites and neurite branching and outgrowth in an L-type VDCC-, c-Src-, and CaMKII-dependent manner. Our results therefore indicate that NCAM2 promotes the formation of filopodia and neurite branching by inducing Ca(2+) influx and CaMKII activation. Changes in NCAM2 expression in Down syndrome and autistic patients may therefore contribute to abnormal neurite branching observed in these disorders.


Asunto(s)
Membrana Celular/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuritas/fisiología , Neuronas/citología , Seudópodos/fisiología , Potenciales de Acción/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Corteza Cerebral/citología , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Moléculas de Adhesión de Célula Nerviosa/genética , Neuritas/efectos de los fármacos , Cloruro de Potasio/farmacología , Proteínas Tirosina Quinasas/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/genética , Pirimidinas/farmacología
8.
Neurogenetics ; 17(4): 201-210, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27318935

RESUMEN

Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.


Asunto(s)
Regulación de la Expresión Génica , Potenciación a Largo Plazo/genética , Animales , Encéfalo/metabolismo , Expresión Génica , Humanos , Memoria/fisiología , Neuronas/metabolismo , ARN no Traducido/genética
9.
Neural Plast ; 2016: 6427537, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242933

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aß, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aß via interaction with the key enzymes involved in Aß formation. Aß-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Humanos
10.
J Neurochem ; 135(4): 830-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26285062

RESUMEN

In humans, deletions/mutations in the CHL1/CALL gene are associated with mental retardation and schizophrenia. Juvenile CHL1-deficient (CHL1(-/-) ) mice have been shown to display abnormally high numbers of parvalbumin-expressing (PV(+) ) hippocampal interneurons and, as adults, display behavioral traits observed in neuropsychiatric disorders. Here, we addressed the question whether inhibitory interneurons and synaptic plasticity in the CHL1(-/-) mouse are affected during brain maturation and in adulthood. We found that hippocampal, but not neocortical, PV(+) interneurons were reduced with age in CHL1(-/-) mice, from a surplus of +27% at 1 month to a deficit of -20% in adulthood compared with wild-type littermates. This loss occurred during brain maturation, correlating with microgliosis and enhanced interleukin-6 expression. In parallel with the loss of PV(+) interneurons, the inhibitory input to adult CA1 pyramidal cells was reduced and a deficit in short- and long-term potentiation developed at CA3-CA1 excitatory synapses between 2 and 9 months of age in CHL1(-/-) mice. This deficit could be abrogated by a GABAA receptor agonist. We propose that region-specific aberrant GABAergic synaptic connectivity resulting from the mutation and a subsequently enhanced synaptic elimination during brain maturation lead to microgliosis, increase in pro-inflammatory cytokine levels, loss of interneurons, and impaired synaptic plasticity. Close homolog of L1-deficient (CHL1(-/-) ) mice have abnormally high numbers of parvalbumin (PV)-expressing hippocampal interneurons in juvenile animals, but in adult animals a loss of these cells is observed. This loss correlates with an increased density of microglia (M), enhanced interleukin-6 (IL6) production and a deficit in short- and long-term potentiation at CA3-CA1 excitatory synapses. Furthermore, adult CHL1(-/-) mice display behavioral traits similar to those observed in neuropsychiatric disorders of humans.


Asunto(s)
Envejecimiento , Moléculas de Adhesión Celular/deficiencia , Regulación de la Expresión Génica/genética , Hipocampo/citología , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/genética , Cerebelo , Ensayo de Inmunoadsorción Enzimática , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Interleucina-3/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Proteínas S100/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
11.
Biochem J ; 464(1): 145-56, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25083612

RESUMEN

Glycogen synthase kinase 3 (GSK3) is essential for normal development and function of the central nervous system. It is especially important for regulating neurotransmission, although the downstream substrates mediating this function are not yet clear. In the present paper, we report the lipid kinase phosphatidylinositol 4-kinase II α (PI4KIIα) is a novel substrate of GSK3 that regulates trafficking and cell-surface expression of neurotransmitter receptors in neurons. GSK3 phosphorylates two distinct sites in the N-terminus of PI4KIIα (Ser5 and Ser47), promoting binding to the adaptor protein 3 (AP-3) complex for trafficking to the lysosome to be degraded. Blocking phosphorylation reduces trafficking to the lysosome, stabilizing PI4KIIα and its cargo proteins for redistribution throughout the cell. Importantly, a reduction in PI4KIIα expression or phosphorylation increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression at the surface of hippocampal neurons. These studies implicate signalling between GSK3 and PI4KIIα as a novel regulator of vesicular trafficking and neurotransmission in the brain.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Lisosomas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Vesículas Transportadoras/enzimología , Animales , Transporte Biológico/fisiología , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley
12.
J Neurosci ; 33(2): 790-803, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303955

RESUMEN

The Neural cell adhesion molecule (NCAM) plays an important role in regulation of nervous system development. To expand our understanding of the molecular mechanisms via which NCAM influences differentiation of neurons, we used a yeast two-hybrid screening to search for new binding partners of NCAM and identified p21-activated kinase 1 (Pak1). We show that NCAM interacts with Pak1 in growth cones of neurons. The autophosphorylation and activity of Pak1 were enhanced when isolated growth cones were incubated with NCAM function triggering antibodies, which mimic the interaction between NCAM and its extracellular ligands. The association of Pak1 with cell membranes, the efficiency of Pak1 binding to its activators, and Pak1 activity were inhibited in brains of NCAM-deficient mice. NCAM-dependent Pak1 activation was abolished after lipid raft disruption, suggesting that NCAM promotes Pak1 activation in the lipid raft environment. Phosphorylation of the downstream Pak1 effectors LIMK1 and cofilin was reduced in growth cones from NCAM-deficient neurons, which was accompanied by decreased levels of filamentous actin and inhibited filopodium mobility in the growth cones. Dominant-negative Pak1 inhibited and constitutively active Pak1 enhanced the ability of neurons to increase neurite outgrowth in response to the extracellular ligands of NCAM. Our combined observations thus indicate that NCAM activates Pak1 to drive actin polymerization to promote neuronal differentiation.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/fisiología , Transducción de Señal/fisiología , Quinasas p21 Activadas/fisiología , Actinas/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Química Encefálica , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , ADN/genética , Femenino , Conos de Crecimiento/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunoprecipitación , Masculino , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuritas/efectos de los fármacos , Fosforilación , Ratas , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/genética , Quinasas p21 Activadas/genética
13.
J Neurosci ; 33(42): 16828-45, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133283

RESUMEN

Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Endocitosis/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/genética , Animales , Células CHO , Cricetulus , Células HEK293 , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
14.
J Biol Chem ; 287(53): 44447-63, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23144456

RESUMEN

CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify ßII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and ßII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-ßII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Endocitosis , Lípidos de la Membrana/metabolismo , Neuritas/metabolismo , Neurogénesis , Neuronas/citología , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Lipoilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo
15.
Cell Commun Signal ; 11: 94, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24330678

RESUMEN

Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.


Asunto(s)
Señalización del Calcio , Moléculas de Adhesión Celular/fisiología , Animales , Calcio/fisiología , Canales de Calcio/fisiología , Adhesión Celular/fisiología , Neuronas
16.
Mol Cell Neurosci ; 50(2): 169-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22503709

RESUMEN

The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuritas/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Heterocigoto , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/biosíntesis , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuritas/enzimología , Neuritas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas/metabolismo
17.
J Neurosci ; 31(10): 3522-35, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21389209

RESUMEN

The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.


Asunto(s)
Exocitosis/fisiología , Conos de Crecimiento/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Fosforilación
18.
J Biol Chem ; 286(26): 23397-406, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21550975

RESUMEN

Homeostatic mechanisms maintaining high levels of adhesion molecules in synapses over prolonged periods of time remain incompletely understood. We used fluorescence recovery after photobleaching experiments to analyze the steady state turnover of the immobile pool of green fluorescent protein-labeled NCAM180, the largest postsynaptically accumulating isoform of the neural cell adhesion molecule (NCAM). We show that there is a continuous flux of NCAM180 to the postsynaptic membrane from nonsynaptic regions of dendrites by diffusion. In the postsynaptic membrane, the newly delivered NCAM180 slowly intermixes with the immobilized pool of NCAM180. Preferential immobilization and accumulation of NCAM180 in the postsynaptic membrane is reduced after disruption of the association of NCAM180 with the spectrin cytoskeleton and in the absence of the homophilic interactions of NCAM180 in synapses. Our observations indicate that the homophilic interactions and binding to the cytoskeleton promote immobilization of NCAM180 and its accumulation in the postsynaptic membrane. Flux of NCAM180 from extrasynaptic regions and its slow intermixture with the immobile pool of NCAM180 in the postsynaptic membrane may be important for the continuous homeostatic replenishment of NCAM180 protein at synaptic contacts without compromising the long term synaptic contact stability.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Membranas Sinápticas/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Membranas Sinápticas/genética
19.
Cereb Cortex ; 21(10): 2217-32, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21339376

RESUMEN

Mechanisms inducing perforation of the postsynaptic density (PSD) are poorly understood. We show that neural cell adhesion molecule- deficient (NCAM-/-) hippocampal neurons have an abnormally high percentage of synapses with perforated PSDs. The percentage of synapses with perforated PSDs is also increased in wild-type (NCAM+/+) neurons after the disruption of the NCAM/spectrin complex indicating that the NCAM-assembled spectrin cytoskeleton maintains the structural integrity of PSDs. We demonstrate that PSD perforations contain endocytic zones involved in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Induction of long-term potentiation in NCAM+/+ neurons accompanied by insertion of AMPAR into the neuronal cell surface is subsequently followed by formation of perforated synapses and AMPAR endocytosis suggesting that perforation of PSDs is important for membrane homeostasis in activated synapses. In NCAM-/- or NCAM+/+ neurons with dissociated spectrin meshwork, AMPAR endocytosis is enhanced under conditions of basal activity. An abnormally high rate of postsynaptic membrane endocytosis may thus contribute to brain pathologies associated with mutations in NCAM or spectrin.


Asunto(s)
Endocitosis , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Densidad Postsináptica/patología , Espectrina/antagonistas & inhibidores , Sinapsis/patología , Animales , Células Cultivadas , Endocitosis/fisiología , Hipocampo/patología , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/fisiología , Densidad Postsináptica/ultraestructura , Multimerización de Proteína/fisiología , Espectrina/fisiología , Sinapsis/ultraestructura , Potenciales Sinápticos/fisiología
20.
J Neurosci ; 30(27): 9292-305, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610764

RESUMEN

Extension of axonal and dendritic processes in the CNS is tightly regulated by outgrowth-promoting and -inhibitory cues to assure precision of synaptic connections. We identify a novel role for contactin-associated protein (Caspr) as an inhibitory cue that reduces neurite outgrowth from CNS neurons. We show that proteolysis of Caspr at the cell surface is regulated by the cellular form of prion protein (PrP), which directly binds to Caspr. PrP inhibits Reelin-mediated shedding of Caspr from the cell surface, thereby increasing surface levels of Caspr and potentiating the inhibitory effect of Caspr on neurite outgrowth. PrP deficiency results in reduced levels of Caspr at the cell surface, enhanced neurite outgrowth in vitro, and more efficient regeneration of axons in vivo following spinal cord injury. Thus, we reveal a previously unrecognized role for Caspr and PrP in inhibitory modulation of neurite outgrowth in CNS neurons, which is counterbalanced by the proteolytic activity of Reelin.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Neuronas/citología , Priones/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Biotinilación/métodos , Encéfalo/citología , Células CHO , Catecolaminas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/deficiencia , Células Cultivadas , Cerebelo/citología , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Matriz Extracelular/deficiencia , Femenino , Regulación de la Expresión Génica/genética , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Inmunoprecipitación/métodos , Locomoción/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuritas/efectos de los fármacos , Neuronas/ultraestructura , Priones/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Recuperación de la Función/genética , Proteína Reelina , Serina/metabolismo , Serina Endopeptidasas/deficiencia , Médula Espinal/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA