Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(14): e112817, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37232029

RESUMEN

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Asunto(s)
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacuolas/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias
2.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37395662

RESUMEN

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Asunto(s)
Brucella , Ochrobactrum , Ochrobactrum/clasificación , Ochrobactrum/genética , Ochrobactrum/patogenicidad , Ochrobactrum/fisiología , Brucella/clasificación , Brucella/genética , Brucella/patogenicidad , Brucella/fisiología , Terminología como Asunto , Filogenia , Brucelosis/tratamiento farmacológico , Brucelosis/microbiología , Humanos , Infecciones Oportunistas/microbiología
3.
Proc Natl Acad Sci U S A ; 117(42): 26374-26381, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020286

RESUMEN

Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.


Asunto(s)
Brucella/genética , Brucella/metabolismo , Vía de Pentosa Fosfato/genética , Adaptación Biológica/genética , Animales , Zoonosis Bacterianas/genética , Evolución Biológica , Femenino , Ratones , Ratones Endogámicos BALB C , Vía de Pentosa Fosfato/fisiología , Fenotipo , Virulencia
4.
J Cell Sci ; 131(4)2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361547

RESUMEN

Entry of the facultative intracellular pathogen Brucella into host cells results in the formation of endosomal Brucella-containing vacuoles (eBCVs) that initially traffic along the endocytic pathway. eBCV acidification triggers the expression of a type IV secretion system that translocates bacterial effector proteins into host cells. This interferes with lysosomal fusion of eBCVs and supports their maturation to replicative Brucella-containing vacuoles (rBCVs). Bacteria replicate in rBCVs to large numbers, eventually occupying most of the cytoplasmic volume. As rBCV membranes tightly wrap each individual bacterium, they are constantly being expanded and remodeled during exponential bacterial growth. rBCVs are known to carry endoplasmic reticulum (ER) markers; however, the relationship of the vacuole to the genuine ER has remained elusive. Here, we have reconstructed the 3-dimensional ultrastructure of rBCVs and associated ER by correlative structured illumination microscopy (SIM) and focused ion beam/scanning electron microscopic tomography (FIB/SEM). Studying B. abortus-infected HeLa cells and trophoblasts derived from B. melitensis-infected mice, we demonstrate that rBCVs are complex and interconnected compartments that are continuous with neighboring ER cisternae, thus supporting a model that rBCVs are extensions of genuine ER.


Asunto(s)
Brucella abortus/ultraestructura , Brucella melitensis/ultraestructura , Retículo Endoplásmico/ultraestructura , Vacuolas/ultraestructura , Animales , Brucella abortus/patogenicidad , Brucella melitensis/patogenicidad , Citoplasma/microbiología , Retículo Endoplásmico/microbiología , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Microscopía Electrónica de Rastreo , Trofoblastos/microbiología , Trofoblastos/ultraestructura , Sistemas de Secreción Tipo IV/ultraestructura , Vacuolas/microbiología
5.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844240

RESUMEN

Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.


Asunto(s)
Brucella abortus/crecimiento & desarrollo , Brucella abortus/genética , Elementos Transponibles de ADN , Genes Bacterianos , Genes Esenciales , Macrófagos/microbiología , Mutagénesis Insercional , Animales , Mapeo Cromosómico , Medios de Cultivo/química , Redes y Vías Metabólicas/genética , Ratones , Células RAW 264.7 , Análisis de Secuencia de ADN , Factores de Virulencia/genética
6.
Mol Microbiol ; 103(5): 780-797, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27893179

RESUMEN

Brucella abortus is a pathogen infecting cattle, able to survive, traffic, and proliferate inside host cells. It belongs to the Alphaproteobacteria, a phylogenetic group comprising bacteria with free living, symbiotic, and pathogenic lifestyles. An essential regulator of cell cycle progression named CtrA was described in the model bacterium Caulobacter crescentus. This regulator is conserved in many alphaproteobacteria, but the evolution of its regulon remains elusive. Here we identified promoters that are CtrA targets using ChIP-seq and we found that CtrA binds to promoters of genes involved in cell cycle progression, in addition to numerous genes encoding outer membrane components involved in export of membrane proteins and synthesis of lipopolysaccharide. Analysis of a conditional B. abortus ctrA loss of function mutant confirmed that CtrA controls cell division. Impairment of cell division generates elongated and branched morphologies, that are also detectable inside HeLa cells. Surprisingly, abnormal bacteria are able to traffic to the endoplasmic reticulum, the usual replication niche of B. abortus in host cells. We also found that CtrA depletion affected outer membrane composition, in particular the abundance and spatial distribution of Omp25. Control of the B. abortus envelope composition by CtrA indicates the plasticity of the CtrA regulon along evolution.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/genética , Brucella abortus/genética , Ciclo Celular/genética , División Celular/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Sitios de Unión , Brucella abortus/patogenicidad , Bovinos , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/microbiología , Mutación , Fosforilación , Filogenia , Regiones Promotoras Genéticas , Regulón , Factores de Transcripción/metabolismo
7.
J Immunol ; 196(9): 3780-93, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036913

RESUMEN

The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-ß deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/ß(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella.


Asunto(s)
Brucella melitensis/inmunología , Brucelosis/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Senos Paranasales/microbiología , Receptores de Interleucina-17/metabolismo , Animales , Células Cultivadas , Inmunidad Mucosa , Memoria Inmunológica , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Interleucina-17/genética , Transducción de Señal
8.
Trop Anim Health Prod ; 50(4): 903-906, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29274056

RESUMEN

This study shows the absence of the world's most common bacterial zoonoses caused by Brucella abortus and Brucella melitensis in cattle, goats and dogs in an agro-pastoral community in South Africa, where heifer vaccination against brucellosis with the live Strain 19 vaccine is compulsory. The study site is bordering wildlife reserves with multiple wildlife species infected with brucellosis. The results showed a low seroprevalence (1.4%) in cattle. Seroprevalence in cattle decreased with age after 4 years in females, males were less positive than females and a tissue culture from a brucellin skin test-positive male was negative. The results indicate that Brucella seropositivity in cattle is due to S19 vaccination and not natural infections. This conclusion is reinforced by the absence of Brucella seropositivity in goats (1/593 positive result) and dogs (0/315), which can be seen as potential spillover hosts. Therefore, the close proximity of brucellosis-infected wildlife is not a threat to domestic animals in this controlled setting with vaccination, fencing and movement control.


Asunto(s)
Brucelosis Bovina/epidemiología , Animales , Animales Domésticos , Animales Salvajes , Brucella abortus/aislamiento & purificación , Brucella melitensis/aislamiento & purificación , Brucelosis/epidemiología , Brucelosis/veterinaria , Bovinos , Estudios Transversales , Enfermedades de los Perros , Perros , Femenino , Cabras , Masculino , Salud Única , Población Rural , Estudios Seroepidemiológicos , Sudáfrica/epidemiología , Vacunación/veterinaria , Zoonosis/epidemiología
9.
Infect Immun ; 85(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808159

RESUMEN

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Asunto(s)
Brucelosis/inmunología , Interacciones Huésped-Patógeno , Interferón gamma/inmunología , Macrófagos/inmunología , Receptores de Interferón/inmunología , Bazo/inmunología , Animales , Antibacterianos/farmacología , Linfocitos B/inmunología , Linfocitos B/microbiología , Brucella abortus/efectos de los fármacos , Brucella abortus/inmunología , Brucella abortus/patogenicidad , Brucella melitensis/efectos de los fármacos , Brucella melitensis/inmunología , Brucella melitensis/patogenicidad , Brucella suis/efectos de los fármacos , Brucella suis/inmunología , Brucella suis/patogenicidad , Brucelosis/tratamiento farmacológico , Brucelosis/genética , Brucelosis/microbiología , Quimiocina CCL19/genética , Quimiocina CCL19/inmunología , Quimiocina CCL21/genética , Quimiocina CCL21/inmunología , Quimiocina CXCL13/genética , Quimiocina CXCL13/inmunología , Enfermedad Crónica , Regulación de la Expresión Génica , Interferón gamma/genética , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Rifampin/farmacología , Transducción de Señal , Bazo/microbiología , Estreptomicina/farmacología , Linfocitos T/inmunología , Linfocitos T/microbiología , Receptor de Interferón gamma
10.
Proc Natl Acad Sci U S A ; 111(50): 17815-20, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453104

RESUMEN

Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.


Asunto(s)
Vías Biosintéticas/fisiología , Brucella/metabolismo , Carbohidrato Epimerasas/metabolismo , Eritritol/metabolismo , Fosfatos de Azúcar/biosíntesis , Brucella/patogenicidad , Isótopos de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Fosforilación , Espectrofotometría
11.
Crit Rev Microbiol ; 42(4): 507-25, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25471320

RESUMEN

The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.


Asunto(s)
Brucella/crecimiento & desarrollo , Brucella/metabolismo , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Animales , Brucella/genética , Brucella/patogenicidad , Brucelosis/microbiología , Humanos , Virulencia
12.
J Immunol ; 192(8): 3740-52, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24646742

RESUMEN

Brucella spp are intracellular bacteria that cause brucellosis, one of the most common zoonoses in the world. Given the serious medical consequences of this disease, a safe and effective human vaccine is urgently needed. Efforts to develop this vaccine have been hampered by our lack of understanding of what constitutes a protective memory response against Brucella. In this study, we characterize the cells and signaling pathways implicated in the generation of a protective immune memory response following priming by the injection of heat-killed or live Brucella melitensis 16M. Using a panel of gene-deficient mice, we demonstrated that during a secondary recall response, both the Brucella-specific humoral response and CD4+ Th1 cells must act together to confer protective immunity in the spleen to B. melitensis infection. Humoral protective immunity is induced by the inoculation of both heat-killed and live bacteria, and its development does not require T cells, MyD88/IL-12p35 signaling pathways, or an activation-induced deaminase-mediated isotype switch. In striking contrast, the presence of memory IFN-γ-producing CD4+ Th1 cells requires the administration of live bacteria and functional MyD88/IL-12p35 pathways. In summary, our work identifies several immune markers closely associated with protective immune memory and could help to define a rational strategy to obtain an effective human vaccine against brucellosis.


Asunto(s)
Brucella melitensis/inmunología , Brucelosis/inmunología , Inmunidad Humoral , Células TH1/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Especificidad de Anticuerpos/inmunología , Bacteriemia/inmunología , Bacteriemia/prevención & control , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/inmunología , Brucelosis/metabolismo , Brucelosis/prevención & control , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antígenos H-2/inmunología , Memoria Inmunológica , Interferón gamma/biosíntesis , Interleucina-12/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Fenotipo , Transducción de Señal , Bazo/citología , Bazo/inmunología , Bazo/microbiología , Células TH1/metabolismo , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Vivas no Atenuadas/administración & dosificación , Vacunas Vivas no Atenuadas/inmunología
13.
J Bacteriol ; 196(16): 3045-57, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24936050

RESUMEN

The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt.


Asunto(s)
Brucella abortus/enzimología , Brucella abortus/patogenicidad , Brucelosis/microbiología , Fructosa-Bifosfatasa/metabolismo , Malato Deshidrogenasa/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Animales , Brucella abortus/genética , Brucella abortus/crecimiento & desarrollo , Brucelosis/patología , Carbono/metabolismo , Modelos Animales de Enfermedad , Fructosa-Bifosfatasa/genética , Eliminación de Gen , Malato Deshidrogenasa/genética , Redes y Vías Metabólicas/genética , Ratones , Piruvato Ortofosfato Diquinasa/genética , Virulencia
14.
Infect Immun ; 82(9): 3927-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25001604

RESUMEN

Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.


Asunto(s)
Brucella melitensis/inmunología , Eritrocitos/inmunología , Animales , Sistemas de Secreción Bacterianos/inmunología , Vacuna contra la Brucelosis/inmunología , Brucelosis/inmunología , Brucelosis/microbiología , Eritrocitos/microbiología , Flagelos/inmunología , Flagelos/microbiología , Ratones , Ratones Endogámicos C57BL
15.
PLoS Pathog ; 8(3): e1002575, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479178

RESUMEN

Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b⁺ F4/80⁺ MHC-II⁺ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS⁺ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.


Asunto(s)
Brucella/inmunología , Brucelosis/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Enfermedades Pulmonares/inmunología , Animales , Biomarcadores/metabolismo , Brucella/patogenicidad , Brucelosis/microbiología , Brucelosis/patología , Separación Celular , Células Dendríticas/microbiología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hígado/inmunología , Hígado/microbiología , Hígado/patología , Enfermedades Pulmonares/microbiología , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Bazo/inmunología , Bazo/microbiología , Bazo/patología
16.
BMC Microbiol ; 14: 223, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25179110

RESUMEN

BACKGROUND: Several intracellular bacterial pathogens have evolved subtle strategies to subvert vesicular trafficking pathways of their host cells to avoid killing and to replicate inside the cells. Brucellae are Gram-negative facultative intracellular bacteria that are responsible for brucellosis, a worldwide extended chronic zoonosis. Following invasion, Brucella abortus is found in a vacuole that interacts first with various endosomal compartments and then with endoplasmic reticulum sub-compartments. Brucella establishes its replication niche in ER-derived vesicles. In the past, it has been proposed that B. abortus passed through the macroautophagy pathway before reaching its niche of replication. However, recent experiments provided evidence that the classical macroautophagy pathway was not involved in the intracellular trafficking and the replication of B. abortus in bone marrow-derived macrophages and in HeLa cells. In contrast, another study showed that macroautophagy favoured the survival and the replication of Brucella melitensis in infected RAW264.7 macrophages. This raises the possibility that B. abortus and B. melitensis followed different intracellular pathways before replicating. In the present work, we have addressed this issue by comparing the replication rate of B. abortus and B. melitensis in embryonic fibroblasts derived from wild-type and Atg5-/- mice, Atg5 being a core component of the canonical macroautophagic pathway. RESULTS: Our results indicate that both B. abortus S2308 and B. melitensis 16M strains are able to invade and replicate in Atg5-deficient fibroblasts, suggesting that the canonical Atg5-dependent macroautophagic pathway is dispensable for Brucella replication. The number of viable bacteria was even slightly higher in Atg5-/- fibroblasts than in wild-type fibroblasts. This increase could be due to a more efficient uptake or to a better survival rate of bacteria before the beginning of the replication in Atg5-deficient cells as compared to wild-type cells. Moreover, our data show that the infection with B. abortus or with B. melitensis does not stimulate neither the conversion of LC3-I to LC3-II nor the membrane recruitment of LC3 onto the BCV. CONCLUSION: Our study suggests that like Brucella abortus, Brucella melitensis does not subvert the canonical macroautophagy to reach its replicative niche or to stimulate its replication.


Asunto(s)
Autofagia , Brucella abortus/crecimiento & desarrollo , Brucella melitensis/crecimiento & desarrollo , Fibroblastos/microbiología , Fibroblastos/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia
17.
Cell Microbiol ; 15(6): 942-960, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23227931

RESUMEN

Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo. The use of cells and mice genetically deficient for different components of inflammasomes suggested that FliC was a target of the cytosolic innate immune receptor NLRC4 in vivo but not in macrophages in vitro where the response to FliC was nevertheless dependent on the cytosolic adaptor ASC, therefore suggesting a new pathway of cytosolic flagellin sensing. However, our work also suggested that the lack of TLR5 activity of Brucella flagellin and the regulation of its synthesis and/or delivery into host cells are both part of the stealthy strategy of Brucella towards the innate immune system. Nevertheless, as a flagellin-deficient mutant of B. melitensis wasfound to cause histologically demonstrable injuries in the spleen of infected mice, we suggested that recognition of FliC plays a role in the immunological stand-off between Brucella and its host, which is characterized by a persistent infection with limited inflammatory pathology.


Asunto(s)
Brucella melitensis/patogenicidad , Brucelosis/fisiopatología , Flagelina/inmunología , Flagelina/metabolismo , Inmunidad Innata/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Brucella melitensis/inmunología , Brucella melitensis/metabolismo , Brucelosis/metabolismo , Brucelosis/patología , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Femenino , Flagelina/genética , Humanos , Técnicas In Vitro , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación/genética , Bazo/microbiología , Bazo/patología , Receptor Toll-Like 5/metabolismo
18.
Front Vet Sci ; 11: 1328293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601913

RESUMEN

Brucellosis is a worldwide extended zoonosis caused by pathogens of the genus Brucella. While most B. abortus, B. melitensis, and B. suis biovars grow slowly in complex media, they multiply intensely in livestock genitals and placenta indicating high metabolic capacities. Mutant analyses in vitro and in infection models emphasize that erythritol (abundant in placenta and genitals) is a preferred substrate of brucellae, and suggest hexoses, pentoses, and gluconeogenic substrates use in host cells. While Brucella sugar and erythritol catabolic pathways are known, growth on 3-4 carbon substrates persists in Fbp- and GlpX-deleted mutants, the canonical gluconeogenic fructose 1,6-bisphosphate (F1,6bP) bisphosphatases. Exploiting the prototrophic and fast-growing properties of B. suis biovar 5, we show that gluconeogenesis requires fructose-bisphosphate aldolase (Fba); the existence of a novel broad substrate bisphosphatase (Bbp) active on sedoheptulose 1,7-bisphosphate (S1,7bP), F1,6bP, and other phosphorylated substrates; that Brucella Fbp unexpectedly acts on S1,7bP and F1,6bP; and that, while active in B. abortus and B. melitensis, GlpX is disabled in B. suis biovar 5. Thus, two Fba-dependent reactions (dihydroxyacetone-phosphate + glyceraldehyde 3-phosphate ⇌ F1,6bP; and dihydroxyacetone-phosphate + erythrose 4-phosphate ⇌ S1,7bP) can, respectively, yield fructose 6-phosphate and sedoheptulose 7-phosphate for classical gluconeogenesis and the Pentose Phosphate Shunt (PPS), the latter reaction opening a new gluconeogenic route. Since erythritol generates the PPS-intermediate erythrose 4-phosphate, and the Fba/Fbp-Bbp route predicts sedoheptulose 7-phosphate generation from erythrose 4-phosphate, we re-examined the erythritol connections with PPS. Growth on erythritol required transaldolase or the Fba/Fbp-Bbp pathway, strongly suggesting that Fba/Fbp-Bbp works as a PPS entry for both erythritol and gluconeogenic substrates in Brucella. We propose that, by increasing erythritol channeling into PPS through these peculiar routes, brucellae proliferate in livestock genitals and placenta in the high numbers that cause abortion and infertility, and make brucellosis highly contagious. These findings could be the basis for developing attenuated brucellosis vaccines safer in pregnant animals.

19.
Microorganisms ; 11(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630630

RESUMEN

One Health is the collaborative efforts of multiple disciplines to attain optimal health for people, animals and the environment, a concept that historically owes much to the study of brucellosis, including recent political and ethical considerations. Brucellosis One Health actors include Public Health and Veterinary Services, microbiologists, medical and veterinary practitioners and breeders. Brucellosis awareness, and the correct use of diagnostic, epidemiological and prophylactic tools is essential. In brucellosis, One Health implementation faces inherited and new challenges, some aggravated by global warming and the intensification of breeding to meet growing food demands. In endemic scenarios, disease awareness, stakeholder sensitization/engagement and the need to build breeder trust are unresolved issues, all made difficult by the protean characteristics of this zoonosis. Extended infrastructural weaknesses, often accentuated by geography and climate, are critically important. Capacity-building faces misconceptions derived from an uncritical adoption of control/eradication strategies applied in countries with suitable means, and requires additional reference laboratories in endemic areas. Challenges for One Health implementation include the lack of research in species other than cattle and small ruminants, the need for a safer small ruminant vaccine, the need to fill in the infrastructure gap, the need for realistic capacity-building, the creation of reference laboratories in critical areas, and the stepwise implementation of measures not directly transposed from the so-called developed countries.

20.
J Bacteriol ; 194(19): 5305-14, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22843843

RESUMEN

Bacterial differentiation is often associated with the asymmetric localization of regulatory proteins, such as histidine kinases. PdhS is an essential and polarly localized histidine kinase in the pathogenic alphaproteobacterium Brucella abortus. After cell division, PdhS is asymmetrically segregated between the two sibling cells, highlighting a differentiation event. However, the function(s) of PdhS in the B. abortus cell cycle remains unknown. We used an original approach, the pentapeptide scanning mutagenesis method, to generate a thermosensitive allele of pdhS. We report that a B. abortus strain carrying this pdhS allele displays growth arrest and an altered DivK-yellow fluorescent protein (YFP) polar localization at the restrictive temperature. Moreover, the production of a nonphosphorylatable PdhS protein or truncated PdhS proteins leads to dominant-negative effects by generating morphological defects consistent with the inhibition of cell division. In addition, we have used a domain mapping approach combined with yeast two-hybrid and fluorescence microscopy methods to better characterize the unusual PdhS sensory domain. We have identified a fragment of the PdhS sensory domain required for protein-protein interaction (amino acids [aa] 210 to 434), a fragment sufficient for polar localization (aa 1 to 434), and a fragment (aa 527 to 661) whose production in B. abortus correlates with the generation of cell shape alterations. The data support a model in which PdhS acts as an essential regulator of cell cycle progression in B. abortus and contribute to a better understanding of the differentiation program inherited by the two sibling cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Brucella abortus/citología , Brucella abortus/metabolismo , Ciclo Celular/fisiología , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Brucella abortus/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Histidina Quinasa , Proteínas Luminiscentes , Mutagénesis , Fosforilación , Proteínas Quinasas/genética , Temperatura , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA