RESUMEN
The Comet Physics Laboratory (CoPhyLab) is an international research program to study the physical properties of cometary analog materials under simulated space conditions. The project is dedicated to studying, with the help of multiple instruments and the different expertise and background from the different partners, the physics of comets, including the processes inside cometary nuclei, the activity leading to the ejection of dust and gas, and the sub-surface and surface evolution of cometary nuclei when exposed to solar illumination. CoPhyLab will provide essential information on the formation and evolution of comets and insights into the origins of primitive Solar System bodies. To this end, we constructed a new laboratory that hosts several small-scale experiments and a large-scale comet-simulation chamber (L-Chamber). This chamber has been designed and constructed to host ice-dust samples with a diameter of up to 250 mm and a variable height between 100 and 300 mm. The cometary-analog samples will be kept at temperatures below 120 K and pressures around 10-6 mbar to ensure cometary-like conditions. In total, 14 different scientific instruments are attached to the L-Chamber to study the temporal evolution of the physical properties of the sample under different insolation conditions. Due to the implementation of a scale inside the L-Chamber that can measure weight changes of the samples with high precision, the cooling system is mechanically decoupled from the sample holder and cooling of the samples occurs by radiation only. The constructed chamber allows us to conduct uninterrupted experiments at low temperatures and pressures up to several weeks.
RESUMEN
Fusarium spp. have recently emerged as significant human pathogens. Identification of these species is important, both for epidemiological purposes and for patient management, but conventional identification based on morphological traits is hindered by major phenotypic polymorphism. In this study, 62 strains, or isolates, belonging to nine Fusarium species were subjected to both molecular identification TEF1 gene sequencing and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analysis. Following stringent standardization, the proteomic-based method appeared to be both reproducible and robust. Mass spectral analysis by comparison with a database, built in this study, of the most frequently isolated species, including Fusarium solani, Fusarium oxysporum, Fusarium verticilloides, Fusarium proliferatum and Fusarium dimerum, correctly identified 57 strains. As expected, the four species (i.e. Fusarium chlamydosporum, Fusarium equiseti, Fusarium polyphialidicum, Fusarium sacchari) not represented in the database were not identified. Results from mass spectrometry and molecular identification agreed in five of the six cases in which results from morphological and molecular identification were not in agreement. MALDI-TOF yielded results within 1 h, making it a valuable tool for identifying clinical Fusarium isolates at the species level. Uncommon species must now be added to the database. MALDI-TOF may also prove useful for identifying other clinically important moulds.