Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 48(2): 380-395.e6, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29426702

RESUMEN

Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.


Asunto(s)
Envejecimiento/inmunología , Sistema Nervioso Central/inmunología , Leucocitos/inmunología , Macrófagos/inmunología , Animales , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/inmunología , Análisis de la Célula Individual
3.
Contemp Sch Psychol ; 25(1): 33-39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33133765

RESUMEN

The acronym R.I.O.T., record review, interview, observation, and test, is a well-known tool for conceptualizing a comprehensive assessment. With COVID-19 and the need to provide school psychological services virtually, it is important to reconsider R.I.O.T. in light of the limitations of virtual assessment. We describe the limitations of virtual assessment and argue that in spite of these barriers, the first three elements of R.I.O.T., record review, interviews, and observations, when used systematically, can provide useful comprehensive assessment data. Specific recommendations are provided for implementing assessment virtually.

4.
Sci Immunol ; 6(65): eabf3111, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797691

RESUMEN

Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB­inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell­dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.


Asunto(s)
Autoinmunidad , Células Epiteliales/inmunología , Factores de Transcripción Forkhead/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Humanos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/deficiencia , Timo/citología , Quinasa de Factor Nuclear kappa B
5.
Neuron ; 85(3): 534-48, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25619654

RESUMEN

The impact of inflammation suppressor pathways on Alzheimer's disease (AD) evolution remains poorly understood. Human genetic evidence suggests involvement of the cardinal anti-inflammatory cytokine, interleukin-10 (IL10). We crossed the APP/PS1 mouse model of cerebral amyloidosis with a mouse deficient in Il10 (APP/PS1(+)Il10(-/-)). Quantitative in silico 3D modeling revealed activated Aß phagocytic microglia in APP/PS1(+)Il10(-/-) mice that restricted cerebral amyloidosis. Genome-wide RNA sequencing of APP/PS1(+)Il10(-/-) brains showed selective modulation of innate immune genes that drive neuroinflammation. Il10 deficiency preserved synaptic integrity and mitigated cognitive disturbance in APP/PS1 mice. In vitro knockdown of microglial Il10-Stat3 signaling endorsed Aß phagocytosis, while exogenous IL-10 had the converse effect. Il10 deficiency also partially overcame inhibition of microglial Aß uptake by human Apolipoprotein E. Finally, the IL-10 signaling pathway was abnormally elevated in AD patient brains. Our results suggest that "rebalancing" innate immunity by blocking the IL-10 anti-inflammatory response may be therapeutically relevant for AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Inmunidad Innata/inmunología , Interleucina-10/deficiencia , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
6.
PLoS One ; 10(11): e0143160, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618502

RESUMEN

A central event in Alzheimer's disease is the accumulation of amyloid ß (Aß) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aß generation and Alzheimer's disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aß levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aß levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3'UTR (untranslated region) at residues 3008-3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3'UTR G-quadruplex as a novel mechanism regulating APP expression.


Asunto(s)
Regiones no Traducidas 3' , Precursor de Proteína beta-Amiloide/genética , G-Cuádruplex , Precursor de Proteína beta-Amiloide/metabolismo , Células HEK293 , Células HeLa , Humanos , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Int J Alzheimers Dis ; 2011: 729382, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21423675

RESUMEN

We report that NTRK2, the gene encoding for the TrkB receptor, can regulate APP metabolism, specifically AICD levels. Using the human neuroblastoma cell line SH-SY5Y, we characterized the effect of three TrkB isoforms (FL, SHC, T) on APP metabolism by knockdown and overexpression. We found that TrkB FL increases AICD-mediated transcription and APP levels while it decreases sAPP levels. These effects were mainly mediated by the tyrosine kinase activity of the receptor and partially by the PLC-γ- and SHC-binding sites. The TrkB T truncated isoform did not have significant effects on APP metabolism when transfected by itself, while the TrkB SHC decreased AICD-mediated transcription. TrkB T abolished TrkB FL effects on APP metabolism when cotransfected with it while TrkB SHC cotransfected with TrkB FL still showed increased APP levels. In conclusion, we demonstrated that TrkB isoforms have differential effects on APP metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA