Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 47(14): 3487-3490, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838709

RESUMEN

Microscale filamentation of 0.25 NA-focused, linearly and circularly polarized 1030 nm and 515 nm ultrashort laser pulses of variable pulse widths in fused silica, fluorite, and natural and synthetic diamonds demonstrates the Raman-Kerr effect in the form of critical pulse power magnitudes, proportional to squared wavelength and inversely proportional to laser pulse width of 0.3-10 ps. The first trend represents the common spectral relationship between the quantities, while the second indicates its time-integrated inertial contribution of Raman-active lattice polarization, appearing in transmission spectra via ultrafast optical-phonon Raman scattering. The optical-phonon contribution to the nonlinear polarization could come from laser field-induced spontaneous/stimulated Raman scattering and coherent optical phonons generated by electron-hole plasma with its clamped density in the nonlinear focus. Almost constant product value of the (sub)picosecond laser pulse widths and corresponding critical pulse powers for self-focusing and filamentation in the dielectrics ("critical pulse energy") apparently implies constant magnitude of the nonlinear polarization and other "clamped" filamentation parameters at the given wavelength.

2.
Opt Lett ; 46(6): 1438-1441, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720206

RESUMEN

Ultrafast heating of photoionized free electrons by high-numerical-aperture (0.25-0.65) focused visible-range ultrashort laser pulses provides their resonant impact trapping into intra-gap electronic states of point defect centers in a natural IaA/B diamond with a high concentration of poorly aggregated nitrogen impurity atoms. This excites fine-structured, broadband (UV-near-infrared) polychromatic luminescence of the centers over the entire bandgap. The observed luminescence spectra revealed substitutional nitrogen interaction with non-equilibrium intrinsic carbon vacancies, produced simultaneously as Frenkel "vacancy-interstitial" pairs during the laser exposure.

3.
Opt Lett ; 45(7): 2026-2029, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236059

RESUMEN

Single microscale filaments were produced in monocrystalline Ia-type diamond by 1030 nm, 300 fs laser pulses tightly focused at NA = 0.3 and different peak powers, visualized by transverse imaging and spectrally characterized by longitudinal micro-spectroscopy, using intrinsic UV A-band photoluminescence (PL) with its peak at about 430 nm. Power-dependent scaling relationships for the local PL yield and diameters of the accompanying luminous micro-channels of recombining electron-hole plasma indicate a transition from three-photon absorption to free-carrier plasma absorption, as the consequent energy deposition mechanisms at increasing peak laser power. Power-dependent elongation of the luminous micro-channels versus peak laser power fitted by a Marburger formula yields, on average a diffraction-based estimate of 0.6 MW critical power for self-focusing within the diamond at the pump laser wavelength of 1030 nm.

4.
Opt Lett ; 39(24): 6954-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25503039

RESUMEN

We demonstrate a scanning fiber-optic probe for magnetic-field imaging where nitrogen-vacancy (NV) centers are coupled to an optical fiber integrated with a two-wire microwave transmission line. The electron spin of NV centers in a diamond microcrystal attached to the tip of the fiber probe is manipulated by a frequency-modulated microwave field and is initialized by laser radiation transmitted through the optical tract of the fiber probe. The two-dimensional profile of the magnetic field is imaged with a high speed and high sensitivity using the photoluminescence spin-readout return from NV centers, captured and delivered by the same optical fiber.

5.
Opt Lett ; 39(23): 6755-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25490670

RESUMEN

We demonstrate fiber-optic magnetometry using a random ensemble of nitrogen-vacancy (NV) centers in nanodiamond coupled to a tapered optical fiber, which provides a waveguide delivery of optical fields for the initialization, polarization, and readout of the electron spin in NV centers.

6.
J Chem Phys ; 133(15): 154301, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20969380

RESUMEN

A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1 MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ∼285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(∗)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (∗) (λ∼325 nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (∗)(npπ (3)Π(g))←Rg(2) (∗)(msσ (3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.

7.
Sci Rep ; 4: 5362, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25028257

RESUMEN

The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic probe where a diamond microcrystal with a well-defined orientation of spin quantization NV axes is attached to the fiber tip, allowing the electron spins of NV centers to be manipulated, polarized, and read out through a fiber-optic waveguide integrated with a two-wire microwave transmission line. The microwave field transmitted through this line is used to manipulate the orientation of electron spins in NV centers through the electron-spin resonance tuned by an external magnetic field. The electron spin is then optically initialized and read out, with the initializing laser radiation and the photoluminescence spin-readout return from NV centers delivered by the same optical fiber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA