Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Cell ; 30(12): 3038-3057, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429223

RESUMEN

Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-ß-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.


Asunto(s)
Glicosiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/metabolismo , Glicosiltransferasas/genética , Pentosiltransferasa/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo
2.
New Phytol ; 221(3): 1544-1555, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30294977

RESUMEN

Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21ß position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21ß oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21ß hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21ß oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.


Asunto(s)
Avena/enzimología , Oxidorreductasas/metabolismo , Triterpenos/metabolismo , Acilación , Sistema Enzimático del Citocromo P-450/metabolismo , Estudios de Asociación Genética , Hidroxilación , Mutación/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Filogenia , Andamios del Tejido/química , Nicotiana/metabolismo , Transcriptoma/genética
3.
Metab Eng ; 42: 185-193, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687337

RESUMEN

Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.


Asunto(s)
Algoritmos , Avena , Comovirus , Descubrimiento de Drogas/métodos , Genoma de Planta , Genoma Viral , Nicotiana , Biología Sintética/métodos , Triterpenos/metabolismo , Avena/enzimología , Avena/genética , Comovirus/enzimología , Comovirus/genética , Nicotiana/enzimología , Nicotiana/genética
4.
New Phytol ; 208(1): 13-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26171760

RESUMEN

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


Asunto(s)
Clonación Molecular/métodos , ADN , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Plantas/genética , Biología Sintética/métodos , Botánica , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Eucariontes/genética , Ingeniería Genética/normas , Plásmidos , Estándares de Referencia , Transcripción Genética
5.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963185

RESUMEN

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Asunto(s)
Avena/genética , Resistencia a la Enfermedad/genética , Redes y Vías Metabólicas/genética , Telómero/genética , Avena/metabolismo , Grano Comestible/genética , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Familia de Multigenes , RNA-Seq , Secuencias Repetitivas de Ácidos Nucleicos , Saponinas/biosíntesis , Saponinas/química , Saponinas/genética , Sintenía/genética , Nicotiana/metabolismo , Secuenciación Completa del Genoma
6.
Mol Plant Microbe Interact ; 21(9): 1154-64, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18700820

RESUMEN

Rx-mediated resistance was analyzed in Rx-expressing transgenic Nicotiana plants. The infection outcome of nine Potato virus X isolates mutated at amino acid positions 121 and 127 of the coat protein (CP) confirmed the key role of these amino acids but provided a more complex picture than previously reported. In particular, in Rx-expressing Nicotiana spp., eliciting activity modulated by amino acid 121 was conditioned by the nature of amino acid 127. These results suggest that the specificity of recognition might be modulated by host factors that are somehow subtly modified between Rx-expressing potato and Rx-expressing transgenic Nicotiana plants. Moreover, the CP of three Potexviruses, Narcissus mosaic virus (NMV), White clover mosaic virus (WClMV), and Cymbidium mosaic virus (CymMV), are all recognized by the Rx-based machinery and able to trigger an Rx-dependant hypersensitive response. A smaller elicitor of 90 amino acids was identified in the CP of NMV and WClMV, which contains the previously identified key positions 121 and 127. This elicitor is only weakly conserved (approximately 40% identity) among the CP of the various recognized viruses, suggesting that the Rx molecular machinery targets a conserved structural element of the Potexvirus CP rather than a conserved amino acid motif.


Asunto(s)
Proteínas de la Cápside/genética , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Potexvirus/genética , Secuencia de Aminoácidos , Western Blotting , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/fisiología , Inmunidad Innata/genética , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/virología , Potexvirus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA