Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nucleic Acids Res ; 51(D1): D1457-D1464, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271794

RESUMEN

The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.


Asunto(s)
Cucurbitaceae , Genoma de Planta , Genómica , Sintenía , Cucurbitaceae/genética , Bases de Datos Factuales , Bases de Datos Genéticas
2.
New Phytol ; 242(5): 2285-2300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503725

RESUMEN

Bottle gourd (Lagenaria siceraria (Mol.) Strandl.) is an economically important vegetable crop and one of the earliest domesticated crops. However, the population history and genomic diversification of bottle gourd have not been extensively studied. We generated a comprehensive bottle gourd genome variation map from genome sequences of 197 world-wide representative accessions, which enables a genome-wide association study for identifying genomic loci associated with resistance to zucchini yellow mosaic virus, and constructed a bottle gourd pangenome that harbors 1534 protein-coding genes absent in the reference genome. Demographic analyses uncover that domesticated bottle gourd originated in Southern Africa c. 12 000 yr ago, and subsequently radiated to the New World via the Atlantic drift and to Eurasia through the efforts of early farmers in the initial Holocene. The identified highly differentiated genomic regions among different bottle gourd populations harbor many genes contributing to their local adaptations such as those related to disease resistance and stress tolerance. Presence/absence variation analysis of genes in the pangenome reveals numerous genes including those involved in abiotic/biotic stress responses that have been under selection during the world-wide expansion of bottle gourds. The bottle gourd variation map and pangenome provide valuable resources for future functional studies and genomics-assisted breeding.


Asunto(s)
Variación Genética , Genoma de Planta , Genómica , Genómica/métodos , Cucurbitaceae/genética , Filogenia , Genética de Población , Resistencia a la Enfermedad/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética
3.
Theor Appl Genet ; 137(4): 91, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38555543

RESUMEN

KEY MESSAGE: Fon race 2 resistant QTLs were identified on chromosomes 8 and 9. Families homozygous for resistance alleles at a haplotype of three KASP markers had 42% lower disease severity than those with susceptible alleles in an independent, interspecific validation population confirming their utility for introgression of Fusarium wilt resistance. Fusarium oxysporum f. sp. niveum (Fon) race 2 causes Fusarium wilt in watermelon and threatens watermelon production worldwide. Chemical management options are not effective, and no resistant edible watermelon cultivars have been released. Implementation of marker-assisted selection to develop resistant cultivars requires identifying sources of resistance and the underlying quantitative trait loci (QTL), developing molecular markers associated with the QTL, and validating marker-phenotype associations with an independent population. An intraspecific Citrullus amarus recombinant inbred line population from a cross of resistant USVL246-FR2 and susceptible USVL114 was used for mapping Fon race 2 resistance QTL. KASP markers were developed (N = 51) for the major QTL on chromosome 9 and minor QTL on chromosomes 1, 6, and 8. An interspecific F2:3 population was developed from resistance donor USVL246-FR2 (C. amarus) and a susceptible cultivar 'Sugar Baby' (Citrullus lanatus) to validate the utility of the markers for introgression of resistance from the wild crop relative into cultivated watermelon. Only 16 KASP markers segregated in the interspecific C. amarus/lanatus validation population. Four markers showed significant differences in the separation of genotypes based on family-mean disease severity, but together explained only 16% of the phenotypic variance. Genotypes that inherited homozygous resistant parental alleles at three KASP markers had 42% lower family-mean disease severity than homozygous susceptible genotypes. Thus, haplotype analysis was more effective at predicting the mean disease severity of families than single markers. The haplotype identified in this study will be valuable for developing Fon race 2 resistant watermelon cultivars.


Asunto(s)
Citrullus , Fusarium , Humanos , Lactante , Sitios de Carácter Cuantitativo , Genotipo , Homocigoto , Citrullus/genética
4.
Plant Dis ; 107(12): 3836-3842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37386705

RESUMEN

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) race 2 is a serious disease in watermelon and can reduce yields by 80%. Genome-wide association studies (GWAS) are a valuable tool in dissecting the genetic basis of traits. Citrullus amarus accessions (n = 120) from the USDA germplasm collection were genotyped with whole-genome resequencing, resulting in 2,126,759 single nucleotide polymorphic (SNP) markers that were utilized for GWAS. Three models were used for GWAS with the R package GAPIT. Mixed linear model (MLM) analysis did not identify any significant marker associations. FarmCPU identified four quantitative trait nucleotides (QTN) on three different chromosomes (i.e., chromosomes 1, 5, and 9), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified one QTN on chromosome 10 as significantly associated with Fon race 2 resistance. FarmCPU identified four QTN that explained 60% of Fon race 2 resistance, and the single QTN from BLINK explained 27%. Relevant candidate genes were found within the linkage disequilibrium (LD) blocks of these significant SNPs, including genes encoding aquaporins, expansins, 2S albumins, and glutathione S-transferases which have been shown to be involved in imparting resistance to Fusarium spp. Genomic predictions (GP) for Fon race 2 resistance using all 2,126,759 SNPs resulted in a mean prediction accuracy of 0.08 with five-fold cross-validation employing genomic best linear unbiased prediction (gBLUP) or ridge-regression best linear unbiased prediction (rrBLUP). Mean prediction accuracy with gBLUP leave-one-out cross-validation was 0.48. Thus, along with identifying genomic regions associated with Fon race 2 resistance among the accessions, this study observed prediction accuracies that were strongly influenced by population size.


Asunto(s)
Citrullus , Fusarium , Estados Unidos , Estudio de Asociación del Genoma Completo , Fusarium/genética , Citrullus/genética , Teorema de Bayes , United States Department of Agriculture , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Genómica
5.
Plant Dis ; 107(7): 2126-2132, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36548923

RESUMEN

Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.


Asunto(s)
Citrullus , Resistencia a la Enfermedad , Tylenchoidea , Animales , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas
6.
Plant J ; 106(3): 588-600, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788333

RESUMEN

Polyploidy has played a crucial role in plant evolution, development and function. Synthetic autopolyploid represents an ideal system to investigate the effects of polyploidization on transcriptional regulation. In this study, we deciphered the impact of genome duplication at phenotypic and molecular levels in watermelon. Overall, 88% of the genes in tetraploid watermelon followed a >1:1 dosage effect, and accordingly, differentially expressed genes were largely upregulated. In addition, a great number of hypomethylated regions (1688) were identified in an isogenic tetraploid watermelon. These differentially methylated regions were localized in promoters and intergenic regions and near transcriptional start sites of the identified upregulated genes, which enhances the importance of methylation in gene regulation. These changes were reflected in sophisticated higher-order chromatin structures. The genome doubling caused switching of 108 A and 626 B compartments that harbored genes associated with growth, development and stress responses.


Asunto(s)
Cromatina/ultraestructura , Citrullus/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Cromosomas de las Plantas/ultraestructura , Citrullus/metabolismo , Epigenoma/genética , Estudios de Asociación Genética , Genoma de Planta/genética , Poliploidía , Tetraploidía
7.
Plant Dis ; 106(7): 1952-1958, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34941369

RESUMEN

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas C. amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 to 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding leucine-rich repeat receptor-like protein kinase and the WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Asunto(s)
Citrullus , Resistencia a la Enfermedad , Oomicetos , Peronospora , Enfermedades de las Plantas , Mapeo Cromosómico , Citrullus/genética , Citrullus/microbiología , Resistencia a la Enfermedad/genética , Estudios de Asociación Genética , Oomicetos/patogenicidad , Peronospora/patogenicidad , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
8.
Nucleic Acids Res ; 47(D1): D1128-D1136, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30321383

RESUMEN

The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a 'SyntenyViewer' to view genome synteny between different cucurbit species and an 'RNA-Seq' module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.


Asunto(s)
Biología Computacional/métodos , Productos Agrícolas/genética , Cucurbita/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica/métodos , Biología Computacional/estadística & datos numéricos , Productos Agrícolas/clasificación , Productos Agrícolas/crecimiento & desarrollo , Cucurbita/clasificación , Cucurbita/crecimiento & desarrollo , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet , Especificidad de la Especie , Sintenía
9.
Plant Mol Biol ; 102(1-2): 213-223, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31845303

RESUMEN

KEY MESSAGE: Transcriptome landscape reveals the molecular mechanisms involved in the improvement of fruit traits by the grafting of watermelon and bottle gourd. Grafting has been used as a sustainable alternative for watermelon breeding to control soil-borne pathogens and to increase tolerance to various abiotic stresses. However, some reports have shown that grafting can negatively affect the quality of fruits. Despite several field studies on the effects of grafting on fruit quality, the regulation of this process at the molecular level has not been revealed. The aim of this study was to elucidate various molecular mechanisms involved in different tissues of heterografted watermelon and bottle gourd plants. Grafting with bottle gourd rootstock increased the size and rind thickness of watermelon fruits, whereas that with watermelon rootstock produced bottle gourd fruits with higher total soluble solid content and thinner rinds. Correspondingly, genes related to ripening, softening, cell wall strengthening, stress response and disease resistance were differentially expressed in watermelon fruits. Moreover, genes associated mainly with sugar metabolism were differentially expressed in bottle gourd fruits. RNA-seq revealed more than 400 mobile transcripts across the heterografted sets. More than half of these were validated from PlaMoM, a database for plant mobile macromolecules. In addition, some of these mobile transcripts contained a transfer RNA-like structure. Other RNA motifs were also enriched in these transcripts, most with a biological role based on GO analysis. This transcriptome study provided a comprehensive understanding of various molecular mechanisms underlying grafted tissues in watermelon.


Asunto(s)
Citrullus/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Transcriptoma , Trasplante Heterólogo , Metabolismo de los Hidratos de Carbono , Citrullus/genética , Resistencia a la Enfermedad/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Fitomejoramiento , Raíces de Plantas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta , Análisis de Secuencia , Estrés Fisiológico
10.
Theor Appl Genet ; 133(2): 677-687, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31822938

RESUMEN

KEY MESSAGE: A Citrullus amarus mapping population segregating for resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus was used to identify novel QTL, important for the improvement in watermelon disease resistance. Multiple disease screens of the USDA Citrullus spp. germplasm collection have highlighted the value of Citrullus amarus (citron melon or wild watermelon) as a resource for enhancing modern watermelon cultivars (Citrullus lanatus) with resistance to a broad range of fungal, bacterial and viral diseases of watermelon. We have generated a genetic population of C. amarus segregating for resistance to two important watermelon diseases: Fusarium wilt (caused by the fungus Fusarium oxysporum f. sp. niveum; Fon race 2) and Papaya ringspot virus-watermelon strain (PRSV-W). QTL mapping of Fon race 2 resistance identified seven significant QTLs, with the major QTL representing a novel genetic source of resistance and an opportunity for gene pyramiding. A single QTL was associated with resistance to PRSV-W, which adhered to expectations of a prior study indicating a single-gene recessive inheritance in watermelon. The resistance loci identified here provide valuable genetic resources for introgression into cultivated watermelon for the improvement in disease resistance.


Asunto(s)
Citrullus/genética , Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Potyvirus/patogenicidad , Mapeo Cromosómico , Citrullus/metabolismo , Citrullus/fisiología , Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Sitios de Carácter Cuantitativo
11.
Plant Biotechnol J ; 17(12): 2246-2258, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31022325

RESUMEN

Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar. Comparative analyses between genomes of 'Charleston Gray' and '97103' revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping-by-sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high-quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the 'Charleston Gray' genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome-wide association studies. The high-quality 'Charleston Gray' genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.


Asunto(s)
Citrullus/genética , Genoma de Planta , Mapeo Cromosómico , Resistencia a la Enfermedad , Frutas , Estudios de Asociación Genética , Genómica , Polimorfismo de Nucleótido Simple
12.
Plant Physiol ; 176(1): 836-850, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118248

RESUMEN

How sugar transporters regulate sugar accumulation in fruits is poorly understood and particularly so for species storing high-concentration Suc. Accumulation of soluble sugars in watermelon (Citrullus lanatus) fruit, a major quality trait, had been selected during domestication. Still, the molecular mechanisms controlling this quantitative trait are unknown. We resequenced 96 recombinant inbred lines, derived from crossing sweet and unsweet accessions, to narrow down the size of a previously described sugar content quantitative trait locus, which contains a putative Tonoplast Sugar Transporter gene (ClTST2). Molecular and biochemical analyses indicated that ClTST2 encodes a vacuolar membrane protein, whose expression is associated with tonoplast uptake and accumulation of sugars in watermelon fruit flesh cells. We measured fruit sugar content and resequenced the genomic region surrounding ClTST2 in 400 watermelon accessions and associated the most sugar-related significant single-nucleotide polymorphisms (SNPs) to the ClTST2 promoter. Large-scale population analyses strongly suggest increased expression of ClTST2 as a major molecular event in watermelon domestication associated with a selection sweep around the ClTST2 promoter. Further molecular analyses explored the binding of a sugar-induced transcription factor (SUSIWM1) to a sugar-responsive cis-element within the ClTST2 promoter, which contains the quantitative trait locus (QTL) causal SNP. The functional characterization of ClTST2 and its expression regulation by SUSIWM1 provide novel tools to increase sugar sink potency in watermelon and possibly in other vegetable and fruit crops.


Asunto(s)
Citrullus/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Azúcares/metabolismo , Vacuolas/metabolismo , Mapeo Cromosómico , Domesticación , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Hexosas/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Sacarosa/metabolismo
13.
J Exp Bot ; 70(15): 3781-3794, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175368

RESUMEN

Color and pigment contents are important aspects of fruit quality and consumer acceptance of cucurbit crops. Here, we describe the independent mapping and cloning of a common causative APRR2 gene regulating pigment accumulation in melon and watermelon. We initially show that the APRR2 transcription factor is causative for the qualitative difference between dark and light green rind in both crops. Further analyses establish the link between sequence or expression level variations in the CmAPRR2 gene and pigment content in the rind and flesh of mature melon fruits. A genome-wide association study (GWAS) of young fruit rind color in a panel composed of 177 diverse melon accessions did not result in any significant association, leading to an earlier assumption that multiple genes are involved in shaping the overall phenotypic variation in this trait. Through resequencing of 25 representative accessions and allelism tests between light rind accessions, we show that multiple independent single nucleotide polymorphisms in the CmAPRR2 gene are causative of the light rind phenotype. The multi-haplotypic nature of this gene explains the lack of detection power obtained through genotyping by sequencing-based GWAS and confirms the pivotal role of this gene in shaping fruit color variation in melon. This study demonstrates the power of combining bi- and multi-allelic designs with deep sequencing, to resolve lack of power due to high haplotypic diversity and low allele frequencies. Due to its central role and broad effect on pigment accumulation in fruits, the APRR2 gene is an attractive target for carotenoid bio-fortification of cucurbit crops.


Asunto(s)
Citrullus/metabolismo , Cucurbitaceae/metabolismo , Frutas/metabolismo , Genoma de Planta/genética , Alelos , Carotenoides/metabolismo , Clorofila/metabolismo , Mapeo Cromosómico , Citrullus/genética , Cucurbitaceae/genética , Frutas/genética , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Pigmentación/genética , Pigmentación/fisiología , Sitios de Carácter Cuantitativo/genética , RNA-Seq
14.
Theor Appl Genet ; 132(5): 1463-1471, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30739153

RESUMEN

KEY MESSAGE: Six QTLs were associated with affected leaf area in response to inoculation with Acidovorax citrulli in a recombinant inbred line population of Citrullus amarus. Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits, has the potential to devastate production of watermelon and other cucurbits. Despite decades of research on host-plant resistance to A. citrulli, no germplasm has been found with immunity and only a few sources with various levels of BFB resistance have been identified, but the genetic basis of resistance in these watermelon sources are not known. Most sources of resistance are plant introductions of Citrullus amarus (citron melon), a closely related species that crosses readily with cultivated watermelon (Citrullus lanatus L.). In this study, we evaluated a recombinant inbred line population (N = 200), derived from a cross between BFB-resistant (USVL246-FR2) and BFB-susceptible (USVL114) C. amarus lines, for foliar resistance to A. citrulli in three replicated greenhouse trials. We found the genetics of BFB resistance to be complicated by strong environmental influence, low heritability and significant genotype-by-environment interactions. QTL mapping of affected leaf area identified six QTL that each explained between 5 and 15% of the variation in BFB resistance in the population. This study represents the first identification of QTL associated with resistance to A. citrulli in any cucurbit.


Asunto(s)
Citrullus/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Citrullus/microbiología , Comamonadaceae , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
15.
Plant Dis ; 103(5): 984-989, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30856077

RESUMEN

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


Asunto(s)
Citrullus , Resistencia a la Enfermedad , Fusarium , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Citrullus/genética , Citrullus/microbiología , Resistencia a la Enfermedad/genética , Fusarium/fisiología
16.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671884

RESUMEN

Watermelon is a good source of citrulline, a non-protein amino acid. Citrulline has several therapeutic and clinical implications as it produces nitric oxide via arginine. In plants, citrulline plays a pivotal role in nitrogen transport and osmoprotection. The purpose of this study was to identify single nucleotide polymorphism (SNP) markers associated with citrulline metabolism using a genome-wide association study (GWAS) and understand the role of citrulline in watermelon domestication. A watermelon collection consisting of 187 wild, landraces, and cultivated accessions was used to estimate citrulline content. An association analysis involved a total of 12,125 SNPs with a minor allele frequency (MAF) >0.05 in understanding the population structure and phylogeny in light of citrulline accumulation. Wild egusi types and landraces contained low to medium citrulline content, whereas cultivars had higher content, which suggests that obtaining higher content of citrulline is a domesticated trait. GWAS analysis identified candidate genes (ferrochelatase and acetolactate synthase) showing a significant association of SNPs with citrulline content. Haplotype networking indicated positive selection from wild to domesticated watermelon. To our knowledge, this is the first study showing genetic regulation of citrulline variation in plants by using a GWAS strategy. These results provide new insights into the citrulline metabolism in plants and the possibility of incorporating high citrulline as a trait in watermelon breeding programs.


Asunto(s)
Citrulina/genética , Citrulina/metabolismo , Citrullus/genética , Citrullus/metabolismo , Domesticación , Estudio de Asociación del Genoma Completo/métodos , Haplotipos/genética , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Arginina , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Frecuencia de los Genes , Ontología de Genes , Genes de Plantas/genética , Genoma de Planta , Óxido Nítrico , Osmorregulación , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple
17.
Plant J ; 92(5): 963-975, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28940759

RESUMEN

Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high-quality 313.4-Mb genome sequence of a bottle gourd inbred line, USVL1VR-Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome-level syntenic relationships between bottle gourd and other cucurbits, as well as lineage-specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring-spot virus (PRSV) resistance in bottle gourd, to a 317.8-kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker-assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high-quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.


Asunto(s)
Cucurbita/genética , Cucurbitaceae/genética , Resistencia a la Enfermedad/genética , Sitios Genéticos/genética , Genoma de Planta/genética , Potyvirus/metabolismo , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cucurbita/virología , Enfermedades de las Plantas/virología
19.
Theor Appl Genet ; 131(4): 829-837, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29372283

RESUMEN

KEY MESSAGE: Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.


Asunto(s)
Cucumis melo/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cucumis melo/microbiología , Epistasis Genética , Fusarium , Ligamiento Genético , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
20.
J Nematol ; 50(3): 303-316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30451416

RESUMEN

Citrullus amarus ( CA ) (previously known as Citrullus lanatus var. citroides ) accessions collected in southern Africa are known to have resistance to root-knot nematodes (RKN) and are suitable rootstocks for grafted watermelon. The objective of this study was to conduct a comparative metabolomics analysis and identify unique metabolites in roots of CA accessions versus roots of watermelon cultivars ( Citrullus lanatus (Thunb.) Matsum. and Nakai var. lanatus; CL ). Nuclear magnetic resonance (NMR) technology and principal component analysis (PCA) were used to analyze and compare metabolic profiles of seven CA accessions resistant to RKN along with two RKN-susceptible watermelon cultivars (Charleston Gray and Crimson Sweet). Calculation of the Mahalanobis distance revealed that the CA United States Plant Introduction (PI) 189225 (Line number 1832) and PI 482324 (1849) have the most distinct metabolic profiles compared with the watermelon cultivars Charleston Gray and Crimson Sweet, respectively. Several amino acids identified in the CA accessions were reported in previous studies to have a nematicidal effect. The results in this study indicate that roots of watermelon accessions collected in the wild are rich in metabolic compounds. These metabolic compounds may have been diminished in watermelon cultivars as a consequence of many years of cultivation and selection for desirable fruit qualities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA