Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Annu Rev Genet ; 54: 337-365, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886545

RESUMEN

The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes/genética , Animales , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutagénesis/genética , Mutación
2.
EMBO Rep ; 24(1): e55197, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36367221

RESUMEN

Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.


Asunto(s)
Trastornos Mentales , Retroelementos , Humanos , Retroelementos/genética , Estudio de Asociación del Genoma Completo , Genoma , Sitios Genéticos , Trastornos Mentales/genética , Elementos Transponibles de ADN/genética , Evolución Molecular
3.
Genes Dev ; 29(21): 2287-97, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26545813

RESUMEN

The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.


Asunto(s)
VIH-1/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Integración Viral/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Intrones/genética , Unión Proteica , Estructura Terciaria de Proteína , Empalme del ARN
4.
Genome Res ; 29(1): 85-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541785

RESUMEN

Cells are regularly exposed to a range of naturally occurring stress that can restrict growth or cause lethality. In response, cells activate expression networks with hundreds of genes that together increase resistance to common environmental insults. However, stress response networks can be insufficient to ensure survival, which raises the question of whether cells possess genetic programs that can promote adaptation to novel forms of stress. We found transposable element (TE) mobility in Schizosaccharomyces pombe was greatly increased when cells were exposed to unusual forms of stress such as heavy metals, caffeine, and the plasticizer phthalate. By subjecting TE-tagged cells to CoCl2, we found the TE integration provided the major path to resistance. Groups of insertions that provided resistance were linked to TOR regulation and metal response genes. We extended our study of adaptation by analyzing TE positions in 57 genetically distinct wild strains. The genomic positions of 1048 polymorphic LTRs were strongly associated with a range of stress response genes, indicating TE integration promotes adaptation in natural conditions. These data provide strong support for the idea, first proposed by Barbara McClintock, that TEs provide a system to modify the genome in response to stress.


Asunto(s)
Adaptación Fisiológica , Elementos Transponibles de ADN , Genoma Fúngico , Schizosaccharomyces , Estrés Fisiológico , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
5.
Mol Biol Evol ; 36(8): 1612-1623, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077324

RESUMEN

The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution.


Asunto(s)
Aptitud Genética , Genoma Fúngico , Schizosaccharomyces/genética , Modelos Genéticos , Mutagénesis Insercional
6.
Mol Cell ; 48(4): 532-46, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23084836

RESUMEN

Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Acetilación , Adenosina Trifosfatasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS Genet ; 13(12): e1006775, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29232693

RESUMEN

Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.


Asunto(s)
Factores de Integración del Huésped/genética , Recombinación Genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Ubiquitina-Proteína Ligasas/genética , Reparación del ADN/genética , Eucariontes/genética , Regulación Fúngica de la Expresión Génica , Integrasas/genética , Regiones Promotoras Genéticas , ADN Polimerasa Dirigida por ARN/genética , Retroviridae/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
8.
Nat Rev Genet ; 12(9): 615-27, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21850042

RESUMEN

Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.


Asunto(s)
Elementos Transponibles de ADN , Epigenómica/métodos , Variación Genética , Metilación de ADN , Reparación del ADN , Evolución Molecular , Genoma Humano , Genoma de Planta , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Análisis de Secuencia de ADN , Telómero/genética , Telómero/metabolismo
9.
Mol Cell ; 30(1): 98-107, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18406330

RESUMEN

The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Retroelementos/genética , Cromatina/química , Cromatina/metabolismo , ADN Intergénico/química , ADN Intergénico/genética , Fructosa-Bifosfatasa , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética
10.
Nucleic Acids Res ; 42(13): 8449-60, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948612

RESUMEN

Transposable elements (TE) have both negative and positive impact on the biology of their host. As a result, a balance is struck between the host and the TE that relies on directing integration to specific genome territories. The extraordinary capacity of DNA sequencing can create ultra dense maps of integration that are being used to study the mechanisms that position integration. Unfortunately, the great increase in the numbers of insertion sites detected comes with the cost of not knowing which positions are rare targets and which sustain high numbers of insertions. To address this problem we developed the serial number system, a TE tagging method that measures the frequency of integration at single nucleotide positions. We sequenced 1 million insertions of retrotransposon Tf1 in the genome of Schizosaccharomyces pombe and obtained the first profile of integration with frequencies for each individual position. Integration levels at individual nucleotides varied over two orders of magnitude and revealed that sequence recognition plays a key role in positioning integration. The serial number system is a general method that can be applied to determine precise integration maps for retroviruses and gene therapy vectors.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Retroelementos , Análisis de Secuencia de ADN/métodos , Lugares Marcados de Secuencia , Mapeo Cromosómico , Regiones Promotoras Genéticas , Schizosaccharomyces/genética
11.
Nucleic Acids Res ; 41(2): 775-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193295

RESUMEN

Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico/genética , Retroelementos , Elementos de Facilitación Genéticos , Estrés Oxidativo , Regiones Promotoras Genéticas , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencias Repetidas Terminales , Transcripción Genética
12.
Retrovirology ; 11: 90, 2014 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-25348155

RESUMEN

BACKGROUND: Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. RESULTS: Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. CONCLUSIONS: MxB inhibits HIV-1 by interfering with minimally two steps of infection, nuclear entry and post-nuclear trafficking and/or integration, without destabilizing the inherent catalytic activity of viral preintegration complexes. Putative MxB GTPase active site residues and stalk domain Loop 4 -- both previously shown to be necessary for MxA function -- were dispensable for MxB antiviral activity. Instead, we highlight subcellular localization and a yet-determined function(s) present in the unique MxB N-terminal region to be required for HIV-1 restriction.


Asunto(s)
Transporte Activo de Núcleo Celular , Antivirales/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Proteínas de Resistencia a Mixovirus/metabolismo , Integración Viral , Línea Celular , Humanos
13.
Nature ; 451(7177): 431-6, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18094683

RESUMEN

Transposable elements and their remnants constitute a substantial fraction of eukaryotic genomes. Host genomes have evolved defence mechanisms, including chromatin modifications and RNA interference, to regulate transposable elements. Here we describe a genome surveillance mechanism for retrotransposons by transposase-derived centromeric protein CENP-B homologues of the fission yeast Schizosaccharomyces pombe. CENP-B homologues of S. pombe localize at and recruit histone deacetylases to silence Tf2 retrotransposons. CENP-Bs also repress solo long terminal repeats (LTRs) and LTR-associated genes. Tf2 elements are clustered into 'Tf' bodies, the organization of which depends on CENP-Bs that display discrete nuclear structures. Furthermore, CENP-Bs prevent an 'extinct' Tf1 retrotransposon from re-entering the host genome by blocking its recombination with extant Tf2, and silence and immobilize a Tf1 integrant that becomes sequestered into Tf bodies. Our results reveal a probable ancient retrotransposon surveillance pathway important for host genome integrity, and highlight potential conflicts between DNA transposons and retrotransposons, major transposable elements believed to have greatly moulded the evolution of genomes.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma Fúngico/genética , Inestabilidad Genómica/genética , Retroelementos/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Fúngicos/genética , Genes del Tipo Sexual de los Hongos/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilasas/metabolismo , Estrés Oxidativo , Transporte de Proteínas , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Secuencias Repetidas Terminales/genética
14.
Genome Res ; 20(2): 239-48, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20040583

RESUMEN

The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mutagénesis Insercional/genética , Retroelementos/genética , Schizosaccharomyces/genética , ADN Polimerasa II/genética , ADN Intergénico/metabolismo , Genoma Fúngico , Ensayos Analíticos de Alto Rendimiento , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Análisis de Secuencia de ADN/métodos
15.
Mob DNA ; 14(1): 19, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012685

RESUMEN

The conference "Transposable Elements at the Crossroads of Evolution, Health and Disease" was hosted by Keystone Symposia in Whistler, British Columbia, Canada, on September 3-6, 2023, and was organized by Kathleen Burns, Harmit Malik and Irina Arkhipova. The central theme of the meeting was the incredible diversity of ways in which transposable elements (TEs) interact with the host, from disrupting the existing genes and pathways to creating novel gene products and expression patterns, enhancing the repertoire of host functions, and ultimately driving host evolution. The meeting was organized into six plenary sessions and two afternoon workshops with a total of 50 invited and contributed talks, two poster sessions, and a career roundtable. The topics ranged from TE roles in normal and pathological processes to restricting and harnessing TE activity based on mechanistic insights gained from genetic, structural, and biochemical studies.

16.
J Virol ; 85(1): 519-29, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980525

RESUMEN

Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1.


Asunto(s)
Mutagénesis Insercional/genética , Regiones Promotoras Genéticas/genética , Retroelementos/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Factor de Transcripción Activador 1/genética , Regulación Fúngica de la Expresión Génica , Fosfoproteínas/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencias Repetidas Terminales/genética
17.
Sci Adv ; 8(26): eabm9390, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767609

RESUMEN

Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.

18.
STAR Protoc ; 2(2): 100392, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33855304

RESUMEN

Transposon insertion sequencing (TIS) is a highly effective method used with bacteria to identify genes important for growth in any condition of interest. Previously, we adapted this method to identify essential genes of the yeast Schizosaccharomyces pombe. Here, we describe modifications used to identify genes necessary for the formation of centromeric heterochromatin. For complete details on the use and execution of this protocol, please refer to Lee et al. (2020).


Asunto(s)
Elementos Transponibles de ADN/genética , Genes Fúngicos/genética , Heterocromatina/genética , Schizosaccharomyces/genética , Análisis de Secuencia de ADN/métodos , Centrómero/genética , ADN de Hongos/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento
19.
J Virol ; 83(6): 2675-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19109383

RESUMEN

The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.


Asunto(s)
ADN Complementario/metabolismo , Integrasas/metabolismo , Recombinación Genética , Retroelementos , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Inmunoprecipitación de Cromatina , Integrasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Alineación de Secuencia , Eliminación de Secuencia
20.
Methods ; 49(3): 243-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19450689

RESUMEN

Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.


Asunto(s)
Elementos Transponibles de ADN , Moscas Domésticas/genética , Mutagénesis Insercional/métodos , Schizosaccharomyces/genética , Animales , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA