Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 633(8028): 77-82, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198652

RESUMEN

Numerous correlated many-body phases, both conventional and exotic, have been reported in magic-angle twisted bilayer graphene (MATBG)1-24. However, the dynamics associated with these correlated states, crucial for understanding the underlying physics, remain unexplored. Here we combine exciton sensing and optical pump-probe spectroscopy to investigate the dynamics of isospin orders in MATBG with WSe2 substrate across the entire flat band, achieving sub-picosecond resolution. We observe remarkably slow isospin dynamics in a broad filling range around ν = 2 and between ν = -3 and -2, with lifetimes of up to 300 ps that decouple from the much faster cooling of electronic temperature (about 10 ps). This non-thermal behaviour demonstrates the presence of abnormally long-lived modes in the isospin degrees of freedom. This observation, not anticipated by theory, implies the existence of long-range propagating collective modes, strong isospin fluctuations and memory effects and is probably associated with an intervalley coherent or incommensurate Kekulé spiral ground state. We further demonstrate non-equilibrium control of the isospin orders previously found around integer fillings. Specifically, through ultrafast manipulation, it can be transiently shifted away from integer fillings. Our study demonstrates a unique probe of collective excitations in MATBG and paves the way for actively controlling non-equilibrium phenomena in moiré systems.

2.
Proc Natl Acad Sci U S A ; 120(39): e2305943120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37738298

RESUMEN

Different superconducting pairing mechanisms are markedly distinct in the underlying Cooper pair kinematics. Quantum-critical soft modes drive pairing interactions in which the pair scattering processes are highly collinear and can be classified into two categories: forward scattering and backscattering. Conversely, in conventional phonon mechanisms, Cooper pair scattering is of a generic noncollinear character. In this study, we present a method to discern the kinematic type by observing the evolution of superconductivity while adjusting the Fermi surface geometry. To demonstrate our approach, we utilize the recently reported phase diagrams of untwisted graphene multilayers. Our analysis connects the emergence of superconductivity at "ghost crossings" of Fermi surfaces in distinct valleys to the pair kinematics of a backscattering type. Together with the observed nonmonotonic behavior of superconductivity near its onset (sharp rise followed by a drop), it lends strong support to a particular quantum-critical superconductivity scenario in which pairing is driven by intervalley coherence fluctuations. These findings offer direct insights into the genesis of pairing in these systems, providing compelling evidence for the electron-electron interactions driving superconductivity. More broadly, our work highlights the potential of tuning bands via ghost crossings as a promising means of boosting superconductivity.

3.
Phys Rev Lett ; 133(6): 066301, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178453

RESUMEN

Bernal bilayer graphene has recently been discovered to exhibit a wide range of unique ordered phases resulting from interaction-driven effects and encompassing spin and valley magnetism, correlated insulators, correlated metals, and superconductivity. This Letter reports on a novel family of correlated phases characterized by spin and valley ordering, distinct from those reported previously. These phases emerge in electron-doped bilayer graphene where the energy bands are exceptionally flat, manifested through an intriguing nonlinear current-bias behavior that occurs at the onset of the phases and is accompanied by an insulating temperature dependence. These characteristics align with the presence of charge- or spin-density-wave states that open a gap on a portion of the Fermi surface or fully gapped Wigner crystals, resulting in an exceptionally intricate phase diagram.

4.
Proc Natl Acad Sci U S A ; 114(12): 3068-3073, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265079

RESUMEN

Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

5.
Proc Natl Acad Sci U S A ; 112(35): 10879-83, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26286992

RESUMEN

We outline a designer approach to endow widely available plain materials with topological properties by stacking them atop other nontopological materials. The approach is illustrated with a model system comprising graphene stacked atop hexagonal boron nitride. In this case, the Berry curvature of the electron Bloch bands is highly sensitive to the stacking configuration. As a result, electron topology can be controlled by crystal axes alignment, granting a practical route to designer topological materials. Berry curvature manifests itself in transport via the valley Hall effect and long-range chargeless valley currents. The nonlocal electrical response mediated by such currents provides diagnostics for band topology.

6.
Nano Lett ; 17(12): 7380-7386, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29045153

RESUMEN

Electron surface states in solids are typically confined to the outermost atomic layers and, due to surface disorder, have negligible impact on electronic transport. Here, we demonstrate a very different behavior for surface states in graphene. We probe the wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in contrast to theoretical predictions, these states can propagate ballistically over micron-scale distances. This is achieved by embedding a graphene resonator formed by gate-defined p-n junctions within a graphene superconductor-normal-superconductor structure. By combining superconducting Aharanov-Bohm interferometry with Fourier methods, we visualize spatially resolved current flow and image FP resonances due to p-n-p cavity modes. The coherence of the standing-wave edge states is revealed by observing a new family of FP resonances, which coexist with the bulk resonances. The edge resonances have periodicity distinct from that of the bulk states manifest in a repeated spatial redistribution of current on and off the FP resonances. This behavior is accompanied by a modulation of the multiple Andreev reflection amplitude on-and-off resonance, indicating that electrons propagate ballistically in a fully coherent fashion. These results, which were not anticipated by theory, provide a practical route to developing electron analog of optical FP resonators at the graphene edge.

7.
Nano Lett ; 15(3): 1451-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25630037

RESUMEN

Transport in photoactive graphene heterostructures, originating from the dynamics of photogenerated hot carriers, is governed by the processes of thermionic emission, electron-lattice thermal imbalance, and cooling. These processes give rise to interesting photoresponse effects, in particular negative differential resistance (NDR) arising in the hot-carrier regime. The NDR effect stems from a strong dependence of electron-lattice cooling on the carrier density, which results in the carrier temperature dropping precipitously upon increasing bias. The ON-OFF switching between the NDR regime and the conventional cold emission regime, as well as the gate-controlled closed-circuit current that is present at zero bias voltage, can serve as signatures of hot-carrier dominated transport.

8.
Phys Rev Lett ; 115(8): 087401, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340206

RESUMEN

Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

9.
Phys Rev Lett ; 114(25): 256601, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26197137

RESUMEN

Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

10.
Nature ; 455(7209): 51-7, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18769433

RESUMEN

The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

11.
Nat Commun ; 15(1): 3133, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605052

RESUMEN

Bernal bilayer graphene (BLG) offers a highly flexible platform for tuning the band structure, featuring two distinct regimes. One is a tunable band gap induced by large displacement fields. Another is a gapless metallic band occurring at low fields, featuring rich fine structure consisting of four linearly dispersing Dirac cones and van Hove singularities. Even though BLG has been extensively studied experimentally, the evidence of this band structure is still elusive, likely due to insufficient energy resolution. Here, we use Landau levels as markers of the energy dispersion and analyze the Landau level spectrum in a regime where the cyclotron orbits of electrons or holes in momentum space are small enough to resolve the distinct mini Dirac cones. We identify the presence of four Dirac cones and map out topological transitions induced by displacement field. By clarifying the low-energy properties of BLG bands, these findings provide a valuable addition to the toolkit for graphene electronics.

12.
Science ; 383(6678): 42-48, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175887

RESUMEN

Quantum oscillations originating from the quantization of electron cyclotron orbits provide sensitive diagnostics of electron bands and interactions. We report on nanoscale imaging of the thermodynamic magnetization oscillations caused by the de Haas-van Alphen effect in moiré graphene. Scanning by means of superconducting quantum interference device (SQUID)-on-tip in Bernal bilayer graphene crystal axis-aligned to hexagonal boron nitride reveals large magnetization oscillations with amplitudes reaching 500 Bohr magneton per electron in weak magnetic fields, unexpectedly low frequencies, and high sensitivity to superlattice filling fraction. The oscillations allow us to reconstruct the complex band structure, revealing narrow moiré bands with multiple overlapping Fermi surfaces separated by unusually small momentum gaps. We identified sets of oscillations that violate the textbook Onsager Fermi surface sum rule, signaling formation of broad-band particle-hole superposition states induced by coherent magnetic breakdown.

13.
Sci Adv ; 10(6): eadj1361, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335282

RESUMEN

Understanding electron-phonon interactions is fundamentally important and has crucial implications for device applications. However, in twisted bilayer graphene near the magic angle, this understanding is currently lacking. Here, we study electron-phonon coupling using time- and frequency-resolved photovoltage measurements as direct and complementary probes of phonon-mediated hot-electron cooling. We find a remarkable speedup in cooling of twisted bilayer graphene near the magic angle: The cooling time is a few picoseconds from room temperature down to 5 kelvin, whereas in pristine bilayer graphene, cooling to phonons becomes much slower for lower temperatures. Our experimental and theoretical analysis indicates that this ultrafast cooling is a combined effect of superlattice formation with low-energy moiré phonons, spatially compressed electronic Wannier orbitals, and a reduced superlattice Brillouin zone. This enables efficient electron-phonon Umklapp scattering that overcomes electron-phonon momentum mismatch. These results establish twist angle as an effective way to control energy relaxation and electronic heat flow.

14.
Phys Rev Lett ; 111(12): 126601, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-24093284

RESUMEN

Massless Dirac fermions in graphene at charge neutrality form a strongly interacting system in which both charged and neutral (energy) modes play an important role. These modes are essentially decoupled in the absence of a magnetic field, but become strongly coupled when the field is applied. We show that this regime is characterized by strong magnetodrag and Hall drag, originating from long-range energy currents and spatial temperature gradients. The energy-driven effects arise in a wide temperature range, and feature an unusually strong dependence on field and carrier density. We argue that this mechanism accounts for the recently observed giant magnetodrag and Hall drag occurring at classically weak fields.

15.
Phys Rev Lett ; 111(26): 266801, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24483808

RESUMEN

We develop a theory of interaction effects in graphene superlattices, where tunable superlattice periodicity can be used as a knob to control the gap at the Dirac point. Applied to graphene on hexa-boron-nitride (G/h-BN), our theory predicts substantial many-body enhancement of this gap. Tunable by the moiré superlattice periodicity, a few orders of magnitude enhancement is reachable under optimal conditions. The Dirac point gap enhancement can be much larger than that of the minigaps opened by Bragg scattering at principal superlattice harmonics. This naturally explains the conundrum of large Dirac point gaps recently observed in G/h-BN heterostructures and their tunability by the G/h-BN twist angle.

16.
Phys Rev Lett ; 109(23): 236602, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23368234

RESUMEN

Coulomb coupling in graphene heterostructures results in vertical energy transfer between electrons in proximal layers. We show that, in the presence of correlated density inhomogeneity in the layers, vertical energy transfer has a strong impact on lateral charge transport. In particular, for Coulomb drag, its contribution dominates over conventional momentum drag near zero doping. The dependence on doping and temperature, which is different for the two drag mechanisms, can be used to separate these mechanisms in experiments. We predict distinct features such as a peak at zero doping and a multiple sign reversal, which provide diagnostics for this new drag mechanism.

17.
Phys Rev Lett ; 109(10): 106602, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23005313

RESUMEN

We predict that graphene is a unique system where disorder-assisted scattering (supercollisions) dominates electron-lattice cooling over a wide range of temperatures, up to room temperature. This is so because for momentum-conserving electron-phonon scattering the energy transfer per collision is severely constrained due to a small Fermi surface size. The characteristic T(3) temperature dependence and power-law cooling dynamics provide clear experimental signatures of this new cooling mechanism. The cooling rate can be changed by orders of magnitude by varying the amount of disorder providing means for a variety of new applications that rely on hot-carrier transport.

18.
Nano Lett ; 11(11): 4688-92, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21936568

RESUMEN

Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.


Asunto(s)
Grafito/química , Grafito/efectos de la radiación , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Conductividad Eléctrica , Luz , Ensayo de Materiales , Dosis de Radiación
19.
Nano Lett ; 11(10): 4134-7, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21879753

RESUMEN

We study photodetection in graphene near a local electrostatic gate, which enables active control of the potential landscape and carrier polarity. We find that a strong photoresponse only appears when and where a p-n junction is formed, allowing on-off control of photodetection. Photocurrents generated near p-n junctions do not require biasing and can be realized using submicrometer gates. Locally modulated photoresponse enables a new range of applications for graphene-based photodetectors including, for example, pixilated infrared imaging with control of response on subwavelength dimensions.

20.
Nat Commun ; 9(1): 1018, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523791

RESUMEN

The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA