Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EMBO J ; 39(18): e105759, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32744742

RESUMEN

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Interneuronas/enzimología , Proteínas Musculares/metabolismo , Estrés Oxidativo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Anciano , Animales , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas Musculares/genética
2.
Biochemistry (Mosc) ; 88(11): 1832-1843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105202

RESUMEN

The evolution of mitochondria has proceeded independently in different eukaryotic lines, which is reflected in the diversity of mitochondrial genomes and mechanisms of their expression in eukaryotic species. Mitochondria have lost most of bacterial ancestor genes by transferring them to the nucleus or eliminating them. However, mitochondria of almost all eukaryotic cells still retain relatively small genomes, as well as their replication, transcription, and translation apparatuses. The dependence on the nuclear genome, specific features of mitochondrial transcripts, and synthesis of highly hydrophobic membrane proteins in the mitochondria have led to significant changes in the translation apparatus inherited from the bacterial ancestor, which retained the basic structure necessary for protein synthesis but became more specialized and labile. In this review, we discuss specific properties of translation initiation in the mitochondria and how the evolution of mitochondria affected the functions of main factors initiating protein biosynthesis in these organelles.


Asunto(s)
Genoma Mitocondrial , Mitocondrias , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Biochemistry (Mosc) ; 86(9): 1151-1161, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565318

RESUMEN

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Evolución Molecular , Edición Génica , Células HeLa , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , NADH Deshidrogenasa/metabolismo , Filogenia , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/clasificación , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
4.
Sci Rep ; 10(1): 7110, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346061

RESUMEN

The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Factores Eucarióticos de Iniciación/genética , Células HeLa , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA