Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2219054120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574676

RESUMEN

Bioprosthetic heart valves (BHV), made from glutaraldehyde-fixed xenografts, are widely used for surgical and transcatheter valve interventions but suffer from limited durability due to structural valve degeneration (SVD). We focused on metabolic syndrome (MetS), a risk factor for SVD and a highly prevalent phenotype in patients affected by valvular heart disease with a well-recognized cluster of comorbidities. Multicenter patient data (N = 251) revealed that patients with MetS were at significantly higher risk of accelerated SVD and required BHV replacement sooner. Using a next-generation proteomics approach, we identified significantly differential proteomes from leaflets of explanted BHV from MetS and non-MetS patients (N = 24). Given the significance of protein infiltration in MetS-induced SVD, we then demonstrated the protective effects of polyoxazoline modification of BHV leaflets to mitigate MetS-induced BHV biomaterial degeneration (calcification, tissue cross-linking, and microstructural changes) in an ex vivo serum model and an in vivo with MetS rat subcutaneous implants.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Síndrome Metabólico , Humanos , Animales , Ratas , Síndrome Metabólico/complicaciones , Válvulas Cardíacas , Factores de Riesgo , Válvula Aórtica/cirugía
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131859

RESUMEN

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/terapia , Oxazoles/farmacología , Pericardio/efectos de los fármacos , Animales , Materiales Biocompatibles , Calcificación Fisiológica/efectos de los fármacos , Calcinosis/tratamiento farmacológico , Calcinosis/metabolismo , Calcinosis/terapia , Línea Celular , Colágeno/metabolismo , Etanol/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Prótesis Valvulares Cardíacas , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Oxidación-Reducción/efectos de los fármacos , Pericardio/metabolismo , Ratas , Ratas Sprague-Dawley , Células THP-1
3.
Pediatr Cardiol ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041710

RESUMEN

The need for right ventricular outflow tract reconstruction is common and growing in congenital heart surgery given expanding indications for the repair of congenital as well as acquired heart disease. Various valved conduit options currently exist including homografts, xenograft pulmonary valved conduits (Contegra™), and porcine valved conduits. The major limitation for all conduits is implant durability, which requires reoperation. Currently, cryopreserved homografts are often used given their superiority shown in long-term data. Significant limitations remain in the cost and availability of the graft, particularly for smaller sizes. Contegra conduits are available in a variety of sizes. Nonetheless, the data regarding long-term durability are less robust and studies comparing durability with homografts have been conflicting. Additionally, there is concern for increased rates of late endocarditis in this conduit. Porcine valved conduits offer a reliable option but are limited by structural valve degeneration associated with all types of bioprosthetic heart valve replacements. New developments in the field of tissue engineering have produced promising bio-restorative valved conduits that may overcome many of the limitations of previous conduit technologies. These remain in the early stages of clinical testing. This review summarizes the clinical data surrounding the conduits used most commonly in clinical practice today and explores emerging technologies that may bring us closer to developing the ideal conduit.

4.
Arterioscler Thromb Vasc Biol ; 41(6): 2049-2062, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33827255
5.
Physiol Genomics ; 52(4): 191-199, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32089075

RESUMEN

Aortic valve sclerosis is a highly prevalent, poorly characterized asymptomatic manifestation of calcific aortic valve disease and may represent a therapeutic target for disease mitigation. Human aortic valve cusps and blood were obtained from 333 patients undergoing cardiac surgery (n = 236 for severe aortic stenosis, n = 35 for asymptomatic aortic valve sclerosis, n = 62 for no valvular disease), and a multiplex assay was used to evaluate protein expression across the spectrum of calcific aortic valve disease. A subset of six valvular tissue samples (n = 3 for asymptomatic aortic valve sclerosis, n = 3 for severe aortic stenosis) was used to create RNA sequencing profiles, which were subsequently organized into clinically relevant gene modules. RNA sequencing identified 182 protein-encoding, differentially expressed genes in aortic valve sclerosis vs. aortic stenosis; 85% and 89% of expressed genes overlapped in aortic stenosis and aortic valve sclerosis, respectively, which decreased to 55% and 84% when we targeted highly expressed genes. Bioinformatic analyses identified six differentially expressed genes encoding key extracellular matrix regulators: TBHS2, SPARC, COL1A2, COL1A1, SPP1, and CTGF. Differential expression of key circulating biomarkers of extracellular matrix reorganization was observed in control vs. aortic valve sclerosis (osteopontin), control vs. aortic stenosis (osteoprotegerin), and aortic valve sclerosis vs. aortic stenosis groups (MMP-2), which corresponded to valvular mRNA expression. We demonstrate distinct mRNA and protein expression underlying aortic valve sclerosis and aortic stenosis. We anticipate that extracellular matrix regulators can serve as circulating biomarkers of early calcific aortic valve disease and as novel targets for early disease mitigation, pending prospective clinical investigations.


Asunto(s)
Estenosis de la Válvula Aórtica/sangre , Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/sangre , Calcinosis/genética , Ácidos Nucleicos Libres de Células/metabolismo , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Transcriptoma , Anciano , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Secuencia de Bases , Biomarcadores/metabolismo , Calcinosis/cirugía , Estudios de Casos y Controles , Ácidos Nucleicos Libres de Células/genética , Matriz Extracelular/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteopontina/genética , Osteoprotegerina/genética , ARN Mensajero/genética , RNA-Seq
6.
J Mol Cell Cardiol ; 115: 94-103, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29291394

RESUMEN

AIMS: Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology. METHODS AND RESULTS: Diseased human MV leaflets were obtained during cardiac surgery for MVP; normal MV leaflets were obtained from heart transplants. MV RNA was used for microarray analysis of MVP patients versus control, highlighting genes that indicate the involvement of 5HTR pathways and extracellular matrix remodeling in MVP. Human MV leaflets were also studied in vitro and ex vivo with biomechanical testing to assess remodeling in the presence of a 5HTR2B antagonist (LY272015). MVP leaflets from Cavalier King Charles Spaniels were used as a naturally acquired in vivo model of MVP. These canine MVP leaflets (N=5/group) showed 5HTR2B upregulation. This study also utilized CB57.1ML/6 mice in order to determine the effect of Angiotensin II infusion on MV remodeling. Histological analysis showed that MV thickening due to chronic Angiotensin II remodeling is mitigated by a 5HTR2B antagonist (LY272015) but not by 5HTR2A inhibitors. CONCLUSION: In humans, MVP is associated with an upregulation in 5HTR2B expression and increased 5HT receptor signaling in the leaflets. Antagonism of 5HTR2B mitigates MVIC activation in vitro and MV remodeling in vivo. These observations support the view that 5HTR signaling is involved not only in previously reported 5HT-related valvulopathies, but it is also involved in the pathological remodeling of MVP.


Asunto(s)
Insuficiencia de la Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/patología , Receptor de Serotonina 5-HT2B/metabolismo , Transducción de Señal , Angiotensina II , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Estudios de Casos y Controles , Perros , Humanos , Ratones Endogámicos C57BL , Válvula Mitral/efectos de los fármacos , Válvula Mitral/metabolismo , Válvula Mitral/patología , Compuestos Orgánicos/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 111(11): 4245-50, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591603

RESUMEN

The fate of nanoparticle (NP) formulations in the multifaceted biological environment is a key determinant of their biocompatibility and therapeutic performance. An understanding of the degradation patterns of different types of clinically used and experimental NP formulations is currently incomplete, posing an unmet need for novel analytical tools providing unbiased quantitative measurements of NP disassembly directly in the medium of interest and in conditions relevant to specific therapeutic/diagnostic applications. In the present study, this challenge was addressed with an approach enabling real-time in situ monitoring of the integrity status of NPs in cells and biomimetic media using Förster resonance energy transfer (FRET). Disassembly of polylactide-based magnetic NPs (MNPs) was investigated in a range of model biomimetic media and in cultured vascular cells using an experimentally established quantitative correlation between particle integrity and FRET efficiency controlled through adjustments in the spectral overlap between two custom-synthesized polylactide-fluorophore (boron dipyrromethene) conjugates incorporated in MNPs. The results suggest particle disassembly governed by diffusion-reaction processes with kinetics strongly dependent on conditions promoting release of oligomeric fragments from the particle matrix. Thus, incubation in gels simulating the extracellular environment and in protein-rich serum resulted in notably lower and higher MNP decomposition rates, respectively, compared with nonviscous liquid buffers. The diffusion-reaction mechanism also is consistent with a significant cell growth-dependent acceleration of MNP processing in dividing vs. contact-inhibited vascular cells. The FRET-based analytical strategy and experimental results reported herein may facilitate the development and inform optimization of biodegradable nanocarriers for cell and drug delivery applications.


Asunto(s)
Materiales Biomiméticos/análisis , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Ensayo de Materiales/métodos , Análisis de Varianza , Vasos Sanguíneos/citología , Sistemas de Computación , Transferencia Resonante de Energía de Fluorescencia , Nanopartículas de Magnetita/uso terapéutico
8.
FASEB J ; 27(6): 2198-206, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23407712

RESUMEN

Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.


Asunto(s)
Adenoviridae/genética , Arterias , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Nanopartículas de Magnetita , Stents , Angioplastia , Animales , Arterias/metabolismo , Bovinos , Línea Celular , Terapia Genética , Masculino , Ácido Oléico , Ratas , Ratas Sprague-Dawley , Zinc
9.
Arterioscler Thromb Vasc Biol ; 33(2): e66-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23241403

RESUMEN

OBJECTIVE: Accumulation of reactive oxygen species (ROS) and remodeling of the microstructure of the cusp characterize aortic valve sclerosis, the early phase of calcific aortic valve disease. These events are associated with activation of valvular interstitial cells (VICs) toward an osteogenic-like phenotype. Because ROS cause DNA damage and transcriptional activation we investigated the relationship between ROS, DNA damage response, and transdifferentiation of VICs. METHODS AND RESULTS: Human aortic valve cusps and patient-matched VICs were collected from 39 patients both with and without calcific aortic valve disease. VICs were exposed to hydrogen peroxide (0.1-1 mmol/L) after cell transduction with extracellular superoxide dismutase/catalase adenoviruses and characterized for DNA-damage response, osteogenic transdifferentiation, and calcification. ROS induce relocalization of phosphorylated γH2AX, MRE11, and XRCC1 proteins with expression of osteogenic signaling molecule RUNX2 via AKT. We report a sustained activation of γH2AX in aortic valve sclerosis-derived VICs suggesting their impaired ability to repair DNA damage. Adenovirus superoxide dismutase/catalase transduction decreases ROS-induced DNA damage and VIC transdifferentiation in aortic valve sclerosis-derived cells. Finally, adenoviral transduction with catalase reverts ROS-mediated calcification and cellular transdifferentiation. CONCLUSIONS: We conclude that the ROS-induced DNA damage response is dysfunctional in early asymptomatic stages of calcific aortic valve disease. We unveiled an association among ROS, DNA-damage response, and cellular transdifferentiation, reversible by antioxidant enzymes delivery.


Asunto(s)
Válvula Aórtica/enzimología , Calcinosis/enzimología , Catalasa/metabolismo , Daño del ADN , Enfermedades de las Válvulas Cardíacas/enzimología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Adenoviridae/genética , Animales , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/patología , Enfermedades Asintomáticas , Calcinosis/genética , Calcinosis/patología , Catalasa/genética , Transdiferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Proteína Homóloga de MRE11 , Ratones , Osteogénesis , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esclerosis , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factores de Tiempo , Transducción Genética , Transfección , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
10.
Respiration ; 88(5): 406-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25323160

RESUMEN

BACKGROUND: Gene therapy is currently under investigation as a means of managing a variety of pulmonary diseases. Unfortunately, gene transfer to bronchial epithelium has been hampered by the lack of stable and efficient transduction. Recent studies have shown that gene vectors could be tethered to the metallic surfaces of intra-arterial stents. This approach enables efficacious and site-specific adenoviral gene delivery to the vascular endothelium. OBJECTIVES: We hypothesized that airway mesh stents impregnated with viral gene vectors could be used for local gene delivery to benign and malignant bronchial epithelium. METHODS: Serotype 5 adenoviral vectors (Ad5, E1-/E3-) containing the reporter genes green fluorescent protein (Ad.GFP) or ß-galactoside/LacZ (Ad.LacZ), or a therapeutic gene, Ad.INF-ß, were coupled to either metallic mesh disks or stents via anti-Ad knob antibodies. These platforms were assessed for their ability to transfect bronchial epithelial cells from both rats and humans, as well as murine (L1C2) and human (A549) lung cancer cell lines. Gene transfer was quantified by fluorescent microscopy, scanning fluorimetry for Ad.GFP, and light microscopy studies assessing ß-galactosidase staining for Ad.LacZ. Metallic mesh and stent-mediated gene transfer was also performed in a murine flank tumor model and in a rat endotracheal tumor model in order to evaluate the therapeutic potential. RESULTS: In these studies, murine and human non-small cell lung cancer (NSCLC) cells were successfully transfected with reporter genes in vitro. Ad.LacZ-complexed mesh successfully transfected reporter genes into established murine flank NSCLC tumors. In addition, Ad.LacZ-tethered stents could effectively transfect both tracheobronchial epithelium and submucosal glands in rats. Similar epithelial transfection was achieved in ex vivo human bronchial epithelium. Pilot in vivo experimentation provided data supporting the concept that therapeutic genes could also be delivered with this technology. In additional pilot in vivo experiments, the growth of murine flank tumors was inhibited by placement of mesh disks coupled with Ad.muINF-ß, and rats bearing endotracheal tumors demonstrated a trend towards prolonged survival with insertion of Ad.ratINF-ß-tethered stents. CONCLUSIONS: Stent-mediated gene delivery successfully enabled site-specific vector administration to target rat and human airway cells in cell culture, organ culture and in vivo. Local tracheobronchial gene delivery via stents could provide a viable clinical solution for overcoming the difficulties encountered with vector delivery within the lungs, in particular by lowering requisite vector titers and by directing desired vectors to areas of interest. This strategy may prove valuable for treating tumors involving the tracheobronchial tree, as well as other nonmalignant tracheobronchial disorders.


Asunto(s)
Neoplasias de los Bronquios/terapia , Carcinoma de Pulmón de Células no Pequeñas/terapia , Técnicas de Transferencia de Gen/instrumentación , Mucosa Respiratoria/patología , Stents , Transgenes , Animales , Neoplasias de los Bronquios/genética , Neoplasias de los Bronquios/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Galactósidos/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Humanos , Interferón beta/genética , Ratas
11.
Pharmaceutics ; 16(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38399249

RESUMEN

The injury-triggered reocclusion (restenosis) of arteries treated with angioplasty to relieve atherosclerotic obstruction remains a challenge due to limitations of existing therapies. A combination of magnetic guidance and affinity-mediated arterial binding can pave the way to a new approach for treating restenosis by enabling efficient site-specific localization of therapeutic agents formulated in magnetizable nanoparticles (MNPs) and by maintaining their presence at the site of arterial injury throughout the vulnerability period of the disease. In these studies, we investigated a dual-targeted antirestenotic strategy using drug-loaded biodegradable MNPs, surface-modified with a fibrin-avid peptide to provide affinity for the injured arterial wall. The MNPs were characterized with regard to their magnetic properties, efficiency of surface functionalization, disassembly kinetics, and interaction with fibrin-coated substrates. The antiproliferative effects of MNPs formulated with paclitaxel were studied in vitro using a fetal cell line (A10) exhibiting the defining characteristics of neointimal smooth muscle cells. Animal studies examined the efficiency of combined (physical/affinity) MNP targeting to stented arteries in Sprague Dawley rats using fluorimetric analysis and fluorescent in vivo imaging. The antirestenotic effect of the dual-targeted therapy was determined in a rat model of in-stent restenosis 28 days post-treatment. The results showed that MNPs can be efficiently functionalized to exhibit a strong binding affinity using a simple two-step chemical process, without adversely affecting their size distribution, magnetic properties, or antiproliferative potency. Dual-targeted delivery strongly enhanced the localization and retention of MNPs in stented carotid arteries up to 7 days post-treatment, while minimizing redistribution of the carrier particles to peripheral tissues. Of the two targeting elements, the effect of magnetic guidance was shown to dominate arterial localization (p = 0.004 vs. 0.084 for magnetic targeting and peptide modification, respectively), consistent with the magnetically driven MNP accumulation step defining the extent of the ultimate affinity-mediated arterial binding and subsequent retention of the carrier particles. The enhanced arterial uptake and sustained presence of paclitaxel-loaded MNPs at the site of stent deployment were associated with a strong inhibition of restenosis in the rat carotid stenting model, with both the neointima-to-media ratio (N/M) and % stenosis markedly reduced in the dual-targeted treatment group (1.62 ± 0.2 and 21 ± 3 vs. 2.17 ± 0.40 and 29 ± 6 in the control animals; p < 0.05). We conclude that the dual-targeted delivery of antirestenotic agents formulated in fibrin-avid MNPs can provide a new platform for the safe and effective treatment of in-stent restenosis.

12.
Pediatrics ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953121

RESUMEN

OBJECTIVES: This study assessed the state of pediatric medical device (PMD) development by comparing PMD clinical trials to pediatric trials evaluating drugs and biologics, from 1999 to 2022. METHODS: The site https://www.clinicaltrials.gov was used to identify and quantify both PMD clinical trials and pediatric trials for drugs and biologics. Clinical specialty was also assessed. The institutions included were the 7 children's hospitals primarily affiliated with the Food and Drug Administration (FDA) Pediatric Device Consortia (PDC) grant program between 2018 and 2023. For a national comparison, an additional search assessed PMD trials across all US medical institutions. RESULTS: A total of 243 PMD clinical trials were identified at the FDA-PDC institutions on the basis of the year of initiation; the average number of PMD trials initiated per year per institution was 1.5 from 1999 to 2022. However, PMD trials significantly increased during the period 2014 to 2022 compared with 1999 to 2013 (P < .001); the rate of initiation of drug and biologic pediatric trials demonstrated no significant differences between these time periods. A national survey of all institutions initiating PMD trials, and drugs and biologics trials, identified 1885 PMD trials out of a total 12 943. A comparable trend was noted in the national survey with initiation of PMD trials increasing significantly from 2014 to 2022 (P < .001), compared with 1999 to 2013, whereas the rate of initiation of drug and biologic trials during these periods did not demonstrate a significant change. CONCLUSIONS: Although pediatric clinical trial initiation for drugs and biologics remained stable from 1999 to 2022, the rate of new PMD trials significantly increased during the period 2014 to 2022 at FDA-PDC institutions and nationally.

13.
Atherosclerosis ; 390: 117432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241977

RESUMEN

BACKGROUND AND AIMS: Hypercholesterolemia (HC) has previously been shown to augment the restenotic response in animal models and humans. However, the mechanistic aspects of in-stent restenosis (ISR) on a hypercholesterolemic background, including potential augmentation of systemic and local inflammation precipitated by HC, are not completely understood. CD47 is a transmembrane protein known to abort crucial inflammatory pathways. Our studies have examined the interrelation between HC, inflammation, and ISR and investigated the therapeutic potential of stents coated with a CD47-derived peptide (pepCD47) in the hypercholesterolemic rabbit model. METHODS: PepCD47 was immobilized on metal foils and stents using polybisphosphonate coordination chemistry and pyridyldithio/thiol conjugation. Cytokine expression in buffy coat-derived cells cultured over bare metal (BM) and pepCD47-derivatized foils demonstrated an M2/M1 macrophage shift with pepCD47 coating. HC and normocholesterolemic (NC) rabbit cohorts underwent bilateral implantation of BM and pepCD47 stents (HC) or BM stents only (NC) in the iliac location. RESULTS: A 40 % inhibition of cell attachment to pepCD47-modified compared to BM surfaces was observed. HC increased neointimal growth at 4 weeks post BM stenting. These untoward outcomes were mitigated in hypercholesterolemic rabbits treated with pepCD47-derivatized stents. Compared to NC animals, inflammatory cytokine immunopositivity and macrophage infiltration of peri-strut areas increased in HC animals and were attenuated in HC rabbits treated with pepCD47 stents. CONCLUSIONS: Augmented inflammatory responses underlie severe ISR morphology in hypercholesterolemic rabbits. Blockage of initial platelet and leukocyte attachment to stent struts through CD47 functionalization of stents mitigates the pro-restenotic effects of hypercholesterolemia.


Asunto(s)
Reestenosis Coronaria , Hipercolesterolemia , Humanos , Animales , Conejos , Hipercolesterolemia/complicaciones , Antígeno CD47 , Reestenosis Coronaria/etiología , Reestenosis Coronaria/prevención & control , Modelos Animales de Enfermedad , Stents , Inflamación , Péptidos/farmacología , Citocinas
14.
Proc Natl Acad Sci U S A ; 107(18): 8346-51, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20404175

RESUMEN

The use of stents for vascular disease has resulted in a paradigm shift with significant improvement in therapeutic outcomes. Polymer-coated drug-eluting stents (DES) have also significantly reduced the incidence of reobstruction post stenting, a disorder termed in-stent restenosis. However, the current DESs lack the capacity for adjustment of the drug dose and release kinetics to the disease status of the treated vessel. We hypothesized that these limitations can be addressed by a strategy combining magnetic targeting via a uniform field-induced magnetization effect and a biocompatible magnetic nanoparticle (MNP) formulation designed for efficient entrapment and delivery of paclitaxel (PTX). Magnetic treatment of cultured arterial smooth muscle cells with PTX-loaded MNPs caused significant cell growth inhibition, which was not observed under nonmagnetic conditions. In agreement with the results of mathematical modeling, significantly higher localization rates of locally delivered MNPs to stented arteries were achieved with uniform-field-controlled targeting compared to nonmagnetic controls in the rat carotid stenting model. The arterial tissue levels of stent-targeted MNPs remained 4- to 10-fold higher in magnetically treated animals vs. control over 5 days post delivery. The enhanced retention of MNPs at target sites due to the uniform field-induced magnetization effect resulted in a significant inhibition of in-stent restenosis with a relatively low dose of MNP-encapsulated PTX (7.5 microg PTX/stent). Thus, this study demonstrates the feasibility of site-specific drug delivery to implanted magnetizable stents by uniform field-controlled targeting of MNPs with efficacy for in-stent restenosis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Magnetismo , Nanopartículas del Metal/administración & dosificación , Paclitaxel/administración & dosificación , Stents , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Oclusión de Injerto Vascular/prevención & control , Masculino , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley
15.
Cardiovasc Res ; 119(1): 302-315, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35020813

RESUMEN

AIMS: Bioprosthetic heart valves (BHVs), made from glutaraldehyde-fixed heterograft materials, are subject to more rapid structural valve degeneration (SVD) in paediatric and young adult patients. Differences in blood biochemistries and propensity for disease accelerate SVD in these patients, which results in multiple re-operations with compounding risks. The goal of this study is to investigate the mechanisms of BHV biomaterial degeneration and present models for studying SVD in young patients and juvenile animal models. METHODS AND RESULTS: We studied SVD in clinical BHV explants from paediatric and young adult patients, juvenile sheep implantation model, rat subcutaneous implants, and an ex vivo serum incubation model. BHV biomaterials were analysed for calcification, collagen microstructure (alignment and crimp), and crosslinking density. Serum markers of calcification and tissue crosslinking were compared between young and adult subjects. We demonstrated that immature subjects were more susceptible to calcification, microstructural changes, and advanced glycation end products formation. In vivo and ex vivo studies comparing immature and mature subjects mirrored SVD in clinical observations. The interaction between host serum and BHV biomaterials leads to significant structural and biochemical changes which impact their functions. CONCLUSIONS: There is an increased risk for accelerated SVD in younger subjects, both experimental animals and patients. Increased calcification, altered collagen microstructure with loss of alignment and increased crimp periods, and increased crosslinking are three main characteristics in BHV explants from young subjects leading to SVD. Together, our studies establish a basis for assessing the increased susceptibility of BHV biomaterials to accelerated SVD in young patients.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Animales , Ratas , Ovinos , Válvulas Cardíacas , Materiales Biocompatibles , Colágeno
16.
Sci Transl Med ; 15(677): eadc9606, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599005

RESUMEN

Degenerative mitral valve (MV) regurgitation (MR) is a highly prevalent heart disease that requires surgery in severe cases. Here, we show that a decrease in the activity of the serotonin transporter (SERT) accelerates MV remodeling and progression to MR. Through studies of a population of patients with MR, we show that selective serotonin reuptake inhibitor (SSRI) use and SERT promoter polymorphism 5-HTTLPR LL genotype were associated with MV surgery at younger age. Functional characterization of 122 human MV samples, in conjunction with in vivo studies in SERT-/- mice and wild-type mice treated with the SSRI fluoxetine, showed that diminished SERT activity in MV interstitial cells (MVICs) contributed to the pathophysiology of MR through enhanced serotonin receptor (HTR) signaling. SERT activity was decreased in LL MVICs partially because of diminished membrane localization of SERT. In mice, fluoxetine treatment or SERT knockdown resulted in thickened MV leaflets. Similarly, silencing of SERT in normal human MVICs led to up-regulation of transforming growth factor ß1 (TGFß1) and collagen (COL1A1) in the presence of serotonin. In addition, treatment of MVICs with fluoxetine not only directly inhibited SERT activity but also decreased SERT expression and increased HTR2B expression. Fluoxetine treatment and LL genotype were also associated with increased COL1A1 expression in the presence of serotonin in MVICs, and these effects were attenuated by HTR2B inhibition. These results suggest that assessment of both 5-HTTLPR genotype and SERT-inhibiting treatments may be useful tools to risk-stratify patients with MV disease to estimate the likelihood of rapid disease progression.


Asunto(s)
Insuficiencia de la Válvula Mitral , Válvula Mitral , Humanos , Animales , Ratones , Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/metabolismo , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Fluoxetina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
17.
Pharm Res ; 29(5): 1232-41, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22274555

RESUMEN

PURPOSE: Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells. METHODS: Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter. RESULTS: A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy. CONCLUSIONS: Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.


Asunto(s)
Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Magnetismo , Nanopartículas , Implantes Absorbibles , Animales , Bovinos , Supervivencia Celular , Células Cultivadas , Química Farmacéutica , Estabilidad de Medicamentos , Óxido Ferrosoférrico/química , Colorantes Fluorescentes/química , Técnicas de Transferencia de Gen , Cinética , Estructura Molecular , Tamaño de la Partícula , Poliésteres/química , Tensoactivos/química
18.
ACS Appl Polym Mater ; 4(2): 1196-1206, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36060230

RESUMEN

Aliphatic polyesters are among materials most extensively used for producing biodegradable polymeric nanoparticles currently in development as delivery carriers and imaging agents for a range of biomedical applications. Their clinical translation requires robust particle labeling methodologies that allow reliably monitoring the fate of these formulations in complex biological environments. In the present study, a practical and versatile synthetic strategy providing conjugates of poly(D,L-lactide) representative of this class of polymers with BODIPY fluorophores varying in functional groups and excitation/emission maxima was investigated as a tool for making traceable nanoparticles. Polymer-probe conjugation was accomplished by carbodiimide-induced and 4-(dimethylamino)pyridinium 4-toluenesulfonate-catalyzed esterification of the polymer's terminal hydroxyl group, either directly with a carboxy-functionalized fluorophore or with amine-protected amino acids (Boc-glycine or Boc-6-aminohexanoic acid). In the latter case, the amino acid-derivatized polymeric precursors were reacted with amine-reactive BODIPY dyes after the removal of the protective group. Unlike nanoparticles encapsulating a strongly hydrophobic BODIPY505/515 (logPo/w = 4.3), nanoparticles labeled covalently with its carboxy-functionalized analogue (BODIPY FL) demonstrated stable particle-tracer association under perfect sink conditions. Furthermore, in contrast to the encapsulated dye rapidly partitioning from particles onto cell membranes but not stably retained by cultured cells, the internalization of the covalently attached probe was an irreversible process requiring the presence of serum, consistent with active nanoparticle uptake by endocytosis. In conclusion, the conjugation of particle-forming polymers with BODIPY fluorophores offers an effective and accessible labeling strategy for making traceable polyester-based biodegradable nanoparticles and is expected to facilitate their development and optimization as therapeutic carriers and diagnostic agents.

19.
Methods Mol Biol ; 2394: 601-616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35094349

RESUMEN

Spatially and temporally controlled delivery of biologicals, including gene vectors, represents an unmet need for regenerative medicine and gene therapy applications. Here we describe a method of reversible attachment of serotype 2 adeno-associated viral vectors (AAV2) to metal surfaces. This technique enables localized delivery of the vector to the target cell population in vitro and in vivo with the subsequent effective transduction of cells adjacent to the metal substrate. The underlying bioengineering approach employs coordination chemistry between the bisphosphonic groups of polyallylamine bisphosphonates and the metal atoms on the surface of metallic samples. Formation of a stable polybisphosphonate monolayer with plentiful allyl-derived amines allows for further chemical modification to consecutively append thiol-modified protein G, an anti-AAV2 antibody, and AAV2 particles. Herein we present a detailed protocols for the metal substrate modification, for the visualization of the metal surface-immobilized vector using direct and indirect fluorescent AAV2 labeling and scanning electron microscopy, for quantification of the surface-immobilized vector load with RT-PCR, and for the localized vector transduction in vitro and in vivo.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Metales , Transducción Genética
20.
Methods Mol Biol ; 2573: 217-233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040598

RESUMEN

Percutaneous coronary interventions (PCI) are the mainstay for treatment of advanced coronary disease. A majority of PCI involve deployment of a stent in the affected vascular segment. This chapter introduces the concept of using stents as a platform for delivering gene therapies to the vasculature with the overarching aim of mitigating in-stent restenosis (ISR), late stent thrombosis (LST), and neoatherosclerosis (NA), a triad of delayed complications that reduce the overall success rate of PCI. The chapter provides a detailed methodology for coatless reversible attachment of adenoviral (Ad) and adeno-associated viral (AAV) vectors to the metal stent struts along with representative in vitro and in vivo results.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reestenosis Coronaria , Intervención Coronaria Percutánea , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia , Reestenosis Coronaria/genética , Reestenosis Coronaria/terapia , Técnicas de Transferencia de Gen , Humanos , Intervención Coronaria Percutánea/efectos adversos , Stents/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA