Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 613(7943): 268-273, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631645

RESUMEN

In the presence of a large perpendicular electric field, Bernal-stacked bilayer graphene (BLG) features several broken-symmetry metallic phases1-3 as well as magnetic-field-induced superconductivity1. The superconducting state is quite fragile, however, appearing only in a narrow window of density and with a maximum critical temperature Tc ≈ 30 mK. Here we show that placing monolayer tungsten diselenide (WSe2) on BLG promotes Cooper pairing to an extraordinary degree: superconductivity appears at zero magnetic field, exhibits an order of magnitude enhancement in Tc and occurs over a density range that is wider by a factor of eight. By mapping quantum oscillations in BLG-WSe2 as a function of electric field and doping, we establish that superconductivity emerges throughout a region for which the normal state is polarized, with two out of four spin-valley flavours predominantly populated. In-plane magnetic field measurements further reveal that superconductivity in BLG-WSe2 can exhibit striking dependence of the critical field on doping, with the Chandrasekhar-Clogston (Pauli) limit roughly obeyed on one end of the superconducting dome, yet sharply violated on the other. Moreover, the superconductivity arises only for perpendicular electric fields that push BLG hole wavefunctions towards WSe2, indicating that proximity-induced (Ising) spin-orbit coupling plays a key role in stabilizing the pairing. Our results pave the way for engineering robust, highly tunable and ultra-clean graphene-based superconductors.

2.
Nature ; 623(7989): 942-948, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968401

RESUMEN

Magic-angle twisted trilayer graphene (MATTG) exhibits a range of strongly correlated electronic phases that spontaneously break its underlying symmetries1,2. Here we investigate the correlated phases of MATTG using scanning tunnelling microscopy and identify marked signatures of interaction-driven spatial symmetry breaking. In low-strain samples, over a filling range of about two to three electrons or holes per moiré unit cell, we observe atomic-scale reconstruction of the graphene lattice that accompanies a correlated gap in the tunnelling spectrum. This short-scale restructuring appears as a Kekulé supercell-implying spontaneous inter-valley coherence between electrons-and persists in a wide range of magnetic fields and temperatures that coincide with the development of the gap. Large-scale maps covering several moiré unit cells further reveal a slow evolution of the Kekulé pattern, indicating that atomic-scale reconstruction coexists with translation symmetry breaking at a much longer moiré scale. We use auto-correlation and Fourier analyses to extract the intrinsic periodicity of these phases and find that they are consistent with the theoretically proposed incommensurate Kekulé spiral order3,4. Moreover, we find that the wavelength characterizing moiré-scale modulations monotonically decreases with hole doping away from half-filling of the bands and depends weakly on the magnetic field. Our results provide essential insights into the nature of the correlated phases of MATTG in the presence of strain and indicate that superconductivity can emerge from an inter-valley coherent parent state.

3.
Nature ; 606(7914): 494-500, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705819

RESUMEN

Magic-angle twisted trilayer graphene (MATTG) has emerged as a moiré material that exhibits strong electronic correlations and unconventional superconductivity1,2. However, local spectroscopic studies of this system are still lacking. Here we perform high-resolution scanning tunnelling microscopy and spectroscopy of MATTG that reveal extensive regions of atomic reconstruction favouring mirror-symmetric stacking. In these regions, we observe symmetry-breaking electronic transitions and doping-dependent band-structure deformations similar to those in magic-angle bilayers, as expected theoretically given the commonality of flat bands3,4. Most notably in a density window spanning two to three holes per moiré unit cell, the spectroscopic signatures of superconductivity are manifest as pronounced dips in the tunnelling conductance at the Fermi level accompanied by coherence peaks that become gradually suppressed at elevated temperatures and magnetic fields. The observed evolution of the conductance with doping is consistent with a gate-tunable transition from a gapped superconductor to a nodal superconductor, which is theoretically compatible with a sharp transition from a Bardeen-Cooper-Schrieffer superconductor to a Bose-Einstein-condensation superconductor with a nodal order parameter. Within this doping window, we also detect peak-dip-hump structures that suggest that superconductivity is driven by strong coupling to bosonic modes of MATTG. Our results will enable further understanding of superconductivity and correlated states in graphene-based moiré structures beyond twisted bilayers5.

4.
Nature ; 589(7843): 536-541, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33462504

RESUMEN

Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron-electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases1-4. Although some phases have been shown to have a non-zero Chern number5,6, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations7,8. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron-hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases.

5.
Nano Lett ; 24(37): 11490-11496, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39226316

RESUMEN

A central paradigm of moiré materials relies on the formation of superlattices that yield enlarged effective crystal unit cells. While a critical consequence of this phenomenon is the celebrated flat electronic bands that foster strong interaction effects, the presence of superlattices has further implications. Here we explore the advantages of moiré superlattices in twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) for passively enhancing optical conductivity in the low-energy regime. To probe the local optical response of TBG/hBN double-moiré lattices, we use infrared (IR) nano-imaging in conjunction with nanocurrent imaging to examine local optical conductivity over a wide range of TBG twist angles. We show that interband transitions associated with the multiple moiré flat and dispersive bands produce tunable transparent IR responses even at finite carrier densities, which is in stark contrast to the previously limited metallic near transparency observed only in undoped pristine graphene.

6.
Phys Rev Lett ; 131(2): 026901, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505954

RESUMEN

Floquet moiré materials possess optically-induced flat-electron bands with steady-states sensitive to drive parameters. Within this regime, we show that strong interaction screening and phonon bath coupling can overcome enhanced drive-induced heating. In twisted bilayer graphene (TBG) irradiated by a terahertz-frequency continuous circularly polarized laser, the extremely slow electronic states enable the drive to control the steady state occupation of high-Berry curvature electronic states. In particular, above a critical field amplitude, high-Berry-curvature states exhibit a slow regime where they decouple from acoustic phonons, allowing the drive to control the anomalous Hall response. Our work shows that the laser-induced control of topological and transport physics in Floquet TBG are measurable using experimentally available probes.

7.
Proc Natl Acad Sci U S A ; 116(42): 20869-20874, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562197

RESUMEN

Surface plasmons in 2-dimensional electron systems with narrow Bloch bands feature an interesting regime in which Landau damping (dissipation via electron-hole pair excitation) is completely quenched. This surprising behavior is made possible by strong coupling in narrow-band systems characterized by large values of the "fine structure" constant [Formula: see text] Dissipation quenching occurs when dispersing plasmon modes rise above the particle-hole continuum, extending into the forbidden energy gap that is free from particle-hole excitations. The effect is predicted to be prominent in moiré graphene, where at magic twist-angle values, flat bands feature [Formula: see text] The extinction of Landau damping enhances spatial optical coherence. Speckle-like interference, arising in the presence of disorder scattering, can serve as a telltale signature of undamped plasmons directly accessible in near-field imaging experiments.

8.
Phys Rev Lett ; 125(6): 066801, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845684

RESUMEN

We propose a new current-driven mechanism for achieving significant plasmon dispersion nonreciprocity in systems with narrow, strongly hybridized electron bands. The magnitude of the effect is controlled by the strength of electron-electron interactions α, which leads to its particular prominence in moiré materials, characterized by α≫1. Moreover, this phenomenon is most evident in the regime where Landau damping is quenched and plasmon lifetime is increased. The synergy of these two effects holds great promise for novel optoelectronic applications of moiré materials.

9.
Phys Rev Lett ; 120(7): 076601, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542984

RESUMEN

In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here we show that the decays are unblocked and the bottleneck is relieved by subtle many-body effects involving multiple off-shell e-h pairs. The decays result from a collective behavior due to simultaneous emission of many soft pairs. We discuss characteristic signatures of the off-shell pathways, in particular the sharp angular distribution of secondary carriers, resembling relativistic jets in high-energy physics. The jets can be directly probed using solid-state equivalent of particle detectors. Collinear scattering enhances carrier multiplication, allowing for emission of as many as ∼10 secondary carriers per single absorbed photon.

10.
Commun Phys ; 7(1): 250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070108

RESUMEN

Materials exhibiting a significant shift current response could potentially outperform conventional solar cell materials. The myriad of factors governing shift-current response, however, poses significant challenges in finding such strong shift-current materials. Here we propose a general design principle that exploits inter-orbital mixing to excite virtual multiband transitions in materials with multiple flat bands to achieve an enhanced shift current response. We further relate this design principle to maximizing Wannier function spread as expressed through the formalism of quantum geometry. We demonstrate the viability of our design using a 1D stacked Rice-Mele model. Furthermore, we consider a concrete material realization - alternating angle twisted multilayer graphene (TMG) - a natural platform to experimentally realize such an effect. We identify a set of twist angles at which the shift current response is maximized via virtual transitions for each multilayer graphene and highlight the importance of TMG as a promising material to achieve an enhanced shift current response at terahertz frequencies. Our proposed mechanism also applies to other 2D systems and can serve as a guiding principle for designing multiband systems that exhibit an enhanced shift current response.

11.
Sci Adv ; 9(17): eadg3262, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126543

RESUMEN

Understanding the nature of strongly correlated states in flat-band materials (such as moiré heterostructures) is at the forefront of both experimental and theoretical pursuits. While magnetotransport, scanning probe, and optical techniques are often very successful in investigating the properties of the underlying order, the exact nature of the ground state often remains unknown. Here, we propose to leverage strong light-matter coupling present in the flat-band systems to gain insight through dynamical dielectric response into the structure of the many-body ground state. We argue that because of the enlargement of the effective lattice of the system arising from correlations, conventional long-range plasmon becomes "folded" to yield a multiband plasmon spectrum. We detail several mechanisms through which the structure of the plasmon spectrum and that of the dynamical dielectric response is susceptible to the underlying order, revealing valued insights such as the interaction-driven band gaps, spin-structure, and the order periodicity.

12.
Science ; 377(6614): 1538-1543, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36173835

RESUMEN

Graphene moiré superlattices show an abundance of correlated insulating, topological, and superconducting phases. Whereas the origins of strong correlations and nontrivial topology can be directly linked to flat bands, the nature of superconductivity remains enigmatic. We demonstrate that magic-angle devices made of twisted tri-, quadri-, and pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and superconductivity. We also observe insulating states in the tril- and quadrilayer arising at finite electric displacement fields. As the number of layers increases, superconductivity emerges over an enhanced filling-factor range, and in the pentalayer it extends well beyond the filling of four electrons per moiré unit cell. Our results highlight the role of the interplay between flat and more dispersive bands in extending superconducting regions in graphene moiré superlattices.

13.
Science ; 361(6404): 789-794, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30139870

RESUMEN

Quantum-relativistic matter is ubiquitous in nature; however, it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a tabletop prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we directly visualize the interplay between spatial and magnetic confinement in a circular graphene resonator as atomic-like shell states condense into Landau levels. We directly observe the development of a "wedding cake"-like structure of concentric regions of compressible-incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can, therefore, yield insights into the behavior of quantum-relativistic matter under extreme conditions.

14.
Science ; 348(6235): 672-5, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25954005

RESUMEN

The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA