Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380754

RESUMEN

Chiral thin films showing electronic and plasmonic circular dichroism (CD) are intensively explored for optoelectronic applications. The most studied chiral organic films are the composites exhibiting a helical geometry, which often causes entanglement of circular optical properties with unwanted linear optical effects (linearly polarized absorption or refraction). This entanglement limits tunability and often translates to a complex optical response. This paper describes chiral films based on dark conglomerate, sponge-like, liquid crystal films, which go beyond the usual helical type geometry, waiving the problem of linear contributions to chiroptical electronic and plasmonic properties. First, we show that purely organic films exhibit high electronic CD and circular birefringence, as studied in detail using Mueller matrix polarimetry. Analogous linear properties are two orders of magnitude lower, highlighting the benefits of using the bi-isotropic dark conglomerate liquid crystal for chiroptical purposes. Next, we show that the liquid crystal can act as a template to guide the assembly of chemically compatible gold nanoparticles into 3D spiral-like assemblies. The Mueller matrix polarimetry measurements confirm that these composites exhibit both electronic and plasmonic circular dichroisms, while nanoparticle presence is not compromising the beneficial optical properties of the matrix.

2.
Microsc Microanal ; : 1-5, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34169809

RESUMEN

Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.

3.
J Am Chem Soc ; 142(44): 18814-18825, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32990433

RESUMEN

Solution-phase self-assembly of anisotropic nanoparticles into complex 2D and 3D assemblies is one of the most promising strategies toward obtaining nanoparticle-based materials and devices with unique optical properties at the macroscale. However, controlling this process with single-particle precision is highly demanding, mostly due to insufficient understanding of the self-assembly process at the nanoscale. We report the use of in situ environmental scanning transmission electron microscopy (WetSTEM), combined with UV/vis spectroscopy, small-angle X-ray diffraction (SAXRD) and multiscale modeling, to draw a detailed picture of the dynamics of vertically aligned assemblies of gold nanorods. Detailed understanding of the self-assembly/disassembly mechanisms is obtained from real-time observations, which provide direct evidence of the colloidal stability of side-to-side nanorod clusters. Structural details and the forces governing the disassembly process are revealed with single particle resolution as well as in bulk samples, by combined experimental and theoretical modeling. In particular, this study provides unique information on the evolution of the orientational order of nanorods within side-to-side 2D assemblies and shows that both electrostatic (at the nanoscale) and thermal (in bulk) stimuli can be used to drive the process. These results not only give insight into the interactions between nanorods and the stability of their assemblies, thereby assisting the design of ordered, anisotropic nanomaterials but also broaden the available toolbox for in situ tracking of nanoparticle behavior at the single-particle level.

4.
Molecules ; 22(2)2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28208720

RESUMEN

Feline injection-site sarcomas are malignant skin tumours with a high local recurrence rate, ranging from 14% to 28%. The treatment of feline injection-site sarcomas includes radical surgery, radiotherapy and/or chemotherapy. In our previous study it has been demonstrated that doxorubicin conjugated to glutathione-stabilized gold nanoparticles (Au-GSH-Dox) has higher cytotoxic effects than free doxorubicin for feline fibrosarcoma cell lines with high glycoprotein P activity (FFS1, FFS3). The aim of the present study was to assess the effectiveness of intratumoural injection of Au-GSH-Dox on the growth of tumours from the FFS1 and FFS3 cell lines on chick embryo chorioallantoic membrane. This model has been utilized both in human and veterinary medicine for preclinical oncological studies. The influence of intratumoural injections of Au-GSH-Dox, glutathione-stabilized gold nanoparticles and doxorubicin alone on the Ki-67 proliferation marker was also checked. We demonstrated that the volume ratio of tumours from the FFS1 and FFS3 cell lines was significantly (p < 0.01) decreased after a single intratumoural injection of Au-GSH-Dox, which confirms the positive results of in vitro studies and indicates that Au-GSH-Dox may be a potent new therapeutic agent for feline injection-site sarcomas.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Membrana Corioalantoides/patología , Doxorrubicina/administración & dosificación , Glutatión , Oro , Nanopartículas del Metal , Sarcoma/patología , Animales , Biomarcadores , Gatos , Línea Celular Tumoral , Embrión de Pollo , Modelos Animales de Enfermedad , Glutatión/química , Oro/química , Inyecciones Intralesiones , Nanopartículas del Metal/química , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Carga Tumoral/efectos de los fármacos
5.
Chemphyschem ; 15(7): 1283-95, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24789440

RESUMEN

Nanoparticle ordered aggregates are promising candidates for future application in a variety of sensing, optical and electronic technologies, mainly based on collective interactions between individual nano-building blocks. Physicochemical properties of such assemblies depend on nanoparticle spacing, therefore a lot of effort throughout the last years was put on development of assembly methods allowing control over aggregates structure. In this minireview we describe efficient self-assembly process based on the utilization of liquid-crystalline ligands grafted onto nanoparticle surface. We show strategies used to synthesize liquid-crystalline nanoparticles as well as discuss parameters influencing structural and thermal characteristic of aggregates. It is also demonstrated that the liquid-crystalline approach offers access to dynamic self-assembly and metamaterials with anisotropic plasmonic properties, which makes this strategy unique among others.


Asunto(s)
Cristales Líquidos/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Anisotropía , Colorantes Fluorescentes/química , Ligandos , Modelos Moleculares , Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos
6.
Angew Chem Int Ed Engl ; 53(50): 13725-8, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25297852

RESUMEN

The properties of liquid-crystalline (LC) hybrid systems made of inorganic nanoparticles grafted with photosensitive azo compounds are presented. For materials with a large density of azo ligands at the surface, the LC structure can be reversibly melted by UV light, and the return to the LC state does not require the absorption of visible light. For systems with a lower density of azo ligands, UV light causes shortening of the distance between metal sublayers in the lamellar phase. Interestingly, the azo derivatives attached to the nanoparticle surface show very different kinetics of cis/trans conformational change as compared to the free molecules. The cis form of free ligands in solution is stable for days, whereas the isomerization of molecules attached to the nanoparticle surface to the trans form takes only a few minutes. Apparently, owing to the crowded environment, azo ligands immobilized at a metal surface behave as they would in the condensed state.

7.
Adv Mater ; 36(13): e2310197, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37905376

RESUMEN

Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.

8.
Langmuir ; 29(10): 3404-10, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23421504

RESUMEN

Hybrid structures made of metal nanoparticles with liquid crystalline coating attract considerable attention due to their conspicuous self-assembly and potential synergistic properties. Here we report on a new structural parameter that can be used to control the formation of hybrid gold nanoparticles superlattice. A series of Au nanoclusters covered with mixed monolayers of alkyl and liquid-crystalline ligands were obtained. For the first time in such systems the lengths of both alkyl ligands and mercapto-functionalized alkyl spacers of the promesogenic molecules were varied. The physicochemical properties of the obtained materials were investigated by different instrumental techniques, such as X-ray photoelectron spectroscopy (XPS), small-angle X-ray diffraction (SAXRD), and transmission electron microscopy (TEM). Interestingly, the applied variations of the grafting layer composition enabled the formation of 1D (lamellar) and 3D long-range ordered structures with systematically changing thermal stability range. Such behavior is explained based on the structural parameters of the hybrid nanoparticles, namely the separation of the cores and ligand flexibility. This work gives some new insights into the nanoparticle self-assembly subject and points out the critical parameters controlling the degree of order within the self-assembled superstructures.

9.
Analyst ; 138(8): 2363-71, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23457707

RESUMEN

A simple procedure leading to disposable potentiometric sensors using as a supporting electrode - electrical lead and transducer - a layer of carbon nanostructured material, either graphene or multi-walled nanotubes, is proposed, and the effect of the material used on the properties of the sensor is discussed. The obtained layers were partially covered with a conventional poly(vinyl chloride) (PVC) based ion-selective membrane to result in simple, planar, and disposable potentiometric sensors. The analytical performance of the thus obtained electrodes was compared with that of classical macroscopic all-solid-state ion-selective electrodes (e.g. employing poly(octylthiophene) as a solid contact and a similar ion-selective membrane). It was superior (taking into account detection limits or selectivity towards Na(+) ions) compared to that of other disposable sensors proposed recently. The observed excellent analytical performance was attributed to the applied method of preparation of carbon nanostructured materials, which does not require addition of a surfactant to obtain a stable suspension (ink) used to prepare the electrical lead and the transducer of the sensor. Although the proposed sensors are predominantly intended for disposable use, pronounced stability of potential readings was obtained in within-day experiments. Moreover, due to their high conductivity carbon-plastic electrodes can be also applied in polarized potentiometric measurements.

10.
ACS Nano ; 17(6): 5548-5560, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36897199

RESUMEN

We describe the fabrication of dual-responsive (thermo/light) chiral plasmonic films. The idea is based on using photoswitchable achiral liquid crystal (LCs) forming chiral nanotubes for templating helical assemblies of Au NPs. Circular dichroism spectroscopy (CD) confirms chiroptical properties coming from the arrangement of organic and inorganic components, with up to 0.2 dissymmetry factor (g-factor). Upon exposure to UV light, organic molecules isomerize, resulting in controlled melting of organic nanotubes and/or inorganic nanohelices. The process can be reversed using visible light and further modified by varying the temperature, offering a control of chiroptical response of the composite material. These properties can play a key role in the future development of chiral plasmonics, metamaterials, and optoelectronic devices.

11.
Analyst ; 137(8): 1895-8, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22398579

RESUMEN

The possibility of the application of non-covalently functionalized graphene as a sensing membrane for the potentiometric determination of zinc ions was examined. A graphene carboxylic derivative was functionalized with 1-(2-pyridylazo)-2-naphthol, the Zn(2+) ions complexing ligand, simply by adsorption of ligand molecules due to π-π interactions. This approach has resulted in a potentiometric sensor characterized with significant selectivity for Zn(2+) ions present in solution.

12.
Phys Rev E ; 106(4-1): 044705, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36397570

RESUMEN

Elementary cellular automata provide one of the simplest ways to generally describe the phenomena of pattern formation. However, they are considered too simple to be able to describe in detail the more complex phenomena occurring in real experimental systems. In this article, we demonstrate the an application of these methods to optical systems, providing an understanding of the mechanisms behind the formation of periodic patterns in nanoparticle-doped liquid crystals. Our extremely simplified model also explains the observed linear relationship between periodicity and system size.

13.
Chem Commun (Camb) ; 58(53): 7364-7367, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35621065

RESUMEN

Liquid crystalline (LC) dimers formed helical nanofilaments depending on the parity of the alkyl linker, revealing an unusual odd-even effect. Molecular dynamics simulations were used to investigate the observed tendency. Elongation of the linker translates to an increase of the pitch of the helices, which allows achieving tuneable helical assemblies of Au nanoparticles doped to the LC matrix. The impact of the tuneable pitch of helices on the chiral optical properties of composites was investigated with full-wave simulations based on the T-matrix method.


Asunto(s)
Cristales Líquidos , Nanopartículas del Metal , Oro , Cristales Líquidos/química , Simulación de Dinámica Molecular , Polímeros/química
14.
ACS Nano ; 16(11): 18472-18482, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342742

RESUMEN

Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herein, we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chirality induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors glum ∼ 10-2. The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semiconductor quantum dots (QDs) into the LC matrix, which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to ∼10-2 and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36305423

RESUMEN

The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands. We confirmed that, after the phase transfer, Au NPs preserve strong, far-field circular dichroism (CD) signals, attesting their chiral geometry. The universality of the method is exemplified by using different types of NPs and ligands. We further highlight the potential of the proposed approach to realize chiral plasmonic, inorganic/organic nanocomposites with block copolymers, liquid crystals, and compounds forming physical gels. All soft matter composites sustain plasmonic CD signals with electron microscopies confirming well-dispersed nanoinclusions. The developed methodology allows us to expand the portfolio of plasmonic NPs with intrinsic structural chirality, thereby broadening the scope of their applications toward soft-matter based systems.

16.
ACS Nano ; 16(12): 20577-20588, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36475617

RESUMEN

Blue phase liquid crystals (BPLCs) are chiral mesophases with 3D order, which makes them a promising template for doping nanoparticles (NPs), yielding tunable nanomaterials attractive for microlasers and numerous microsensor applications. However, doping NPs to BPLCs causes BP lattice extension, which translates to elongation of operating wavelengths of light reflection. Here, it is demonstrated that small (2.4 nm diameter) achiral gold (Au) NPs decorated with designed LC-like ligands can enhance the chiral twist of BPLCs (i.e., reduce cell size of the single BP unit up to ∼14% and ∼7% for BPI and BPII, respectively), translating to a blue-shift of Bragg reflection. Doping NPs also significantly increases the thermal stability of BPs from 5.5 °C (for undoped BPLC) up to 22.8 °C (for doped BPLC). In line with our expectations, both effects are saturated, and their magnitude depends on the concentration of investigated nanodopants as well the BP phase type. Our research highlights the critical role of functionalization of Au NPs on the phase sequence of BPLCs. We show that inappropriate selection of surface ligands can destabilize BPs. Our BPLC and Au NPs are photochemically stable and exhibit great miscibility, preventing NP aggregation in the BPLC matrix over the long term. We believe that our findings will improve the fabrication of advanced nanomaterials into 3D periodic soft photonic structures.

17.
Nanomaterials (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578613

RESUMEN

Self-assembly of metal nanoparticles has applications in the fabrication of optically active materials. Here, we introduce a facile strategy for the fabrication of films of binary nanoparticle assemblies. Dynamic control over the configuration of gold nanorods and nanospheres is achieved via the melting of bound and unbound fractions of liquid-crystal-like nanoparticle ligands. This approach provides a route for the preparation of hierarchical nanoparticle superstructures with applications in reversibly switchable, visible-range plasmonic technologies.

18.
Nanoscale Adv ; 3(18): 5387-5392, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132630

RESUMEN

Macroscopic scale sources of polarized light play a fundamental role in designing light-emitting devices. In this communication we report the formation of nano- and macro-scale ordered, layered assemblies of InP/ZnS quantum dots (QDs) exhibiting fluorescence anisotropy (FA), as well as thermo- and mechano-responsive properties. The long-range organization of small, quasi-isotropic nanoparticles was achieved by introducing liquid crystal molecules to the surface of QDs, without the need to use an organic matrix. Melting/crystallization of the ligand at 95 deg. C translated to a reversible reconfiguration of QDs thin film between 2D layered and body-centered cubic structures, characteristic for a temperature range below and above the melting point, respectively. The low-temperature, layered structure exhibited mechano-responsiveness which was key to introduce and control the sample alignment. Interestingly, transverse and parallel alignment modes of QDs layers were achieved, depending on the temperature of mechanical shearing. As prepared QD samples exhibited fluorescence anisotropy strongly correlated to the macroscopic orientation of the layers. Correlated small-angle X-ray diffraction (SAXRD) and fluorescence spectroscopy studies confirmed the mm-scale alignment of the thin films of QDs. Such films may be advantageous for developing efficient, densely packed, and uniform macro-scale FA sources.

19.
ACS Nano ; 15(3): 4916-4926, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33621046

RESUMEN

The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.

20.
Materials (Basel) ; 13(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075278

RESUMEN

Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA