Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1012211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102402

RESUMEN

The SARS-CoV-2 pandemic has generated a considerable number of infections and associated morbidity and mortality across the world. Recovery from these infections, combined with the onset of large-scale vaccination, have led to rapidly-changing population-level immunological landscapes. In turn, these complexities have highlighted a number of important unknowns related to the breadth and strength of immunity following recovery or vaccination. Using simple mathematical models, we investigate the medium-term impacts of waning immunity against severe disease on immuno-epidemiological dynamics. We find that uncertainties in the duration of severity-blocking immunity (imparted by either infection or vaccination) can lead to a large range of medium-term population-level outcomes (i.e. infection characteristics and immune landscapes). Furthermore, we show that epidemiological dynamics are sensitive to the strength and duration of underlying host immune responses; this implies that determining infection levels from hospitalizations requires accurate estimates of these immune parameters. More durable vaccines both reduce these uncertainties and alleviate the burden of SARS-CoV-2 in pessimistic outcomes. However, heterogeneity in vaccine uptake drastically changes immune landscapes toward larger fractions of individuals with waned severity-blocking immunity. In particular, if hesitancy is substantial, more robust vaccines have almost no effects on population-level immuno-epidemiology, even if vaccination rates are compensatorily high among vaccine-adopters. This pessimistic scenario for vaccination heterogeneity arises because those few individuals that are vaccine-adopters are so readily re-vaccinated that the duration of vaccinal immunity has no appreciable consequences on their immune status. Furthermore, we find that this effect is heightened if vaccine-hesitants have increased transmissibility (e.g. due to riskier behavior). Overall, our results illustrate the necessity to characterize both transmission-blocking and severity-blocking immune time scales. Our findings also underline the importance of developing robust next-generation vaccines with equitable mass vaccine deployment.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/epidemiología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacilación a la Vacunación/estadística & datos numéricos , Índice de Severidad de la Enfermedad , Vacunación/estadística & datos numéricos , Pandemias/prevención & control , Biología Computacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA