Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropharmacology ; 139: 150-162, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29964095

RESUMEN

GABAergic interneurons in the hippocampus are critically involved in almost all hippocampal circuit functions including coordinated network activity. Somatostatin-expressing oriens-lacunosum moleculare (O-LM) interneurons are a major subtype of dendritically projecting interneurons in hippocampal subregions (e.g., CA1), and express group I metabotropic glutamate receptors (mGluRs), specifically mGluR1 and mGluR5. Group I mGluRs are thought to regulate hippocampal circuit functions partially through GABAergic interneurons. Previous studies suggest that a group I/II mGluR agonist produces slow supra-threshold membrane oscillations (<0.1 Hz), which are associated with high-frequency action potential (AP) discharges in O-LM interneurons. However, the properties and underlying mechanisms of these slow oscillations remain largely unknown. We performed whole-cell patch-clamp recordings from mouse interneurons in the stratum oriens/alveus (O/A interneurons) including CA1 O-LM interneurons. Our study revealed that the selective mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced slow membrane oscillations (<0.1 Hz), which were associated with gamma frequency APs followed by AP-free perithreshold gamma oscillations. The selective mGluR1 antagonist (S)-(+)-α-Amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) reduced the slow oscillations, and the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) partially blocked them. Blockade of nonselective cation-conducting transient receptor potential channels, L-type Ca2+ channels, or ryanodine receptors all abolished the slow oscillations, suggesting the involvement of multiple mechanisms. Our findings suggest that group I mGluR activation in O/A interneurons may play an important role in coordinated network activity, and O/A interneuron vulnerability to excitotoxicity, in disease states like seizures, is at least in part due to an excessive rise in intracellular Ca2+.


Asunto(s)
Ondas Encefálicas/fisiología , Hipocampo/metabolismo , Interneuronas/metabolismo , Potenciales de la Membrana/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Ondas Encefálicas/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Ratones Endogámicos C57BL , Periodicidad , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Convulsiones/metabolismo , Técnicas de Cultivo de Tejidos , Canales de Potencial de Receptor Transitorio/metabolismo
2.
Neuroscience ; 376: 80-93, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29462702

RESUMEN

The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB1BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB1BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Periodicidad , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA