Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Neurol ; 22(1): 269, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854226

RESUMEN

BACKGROUND: Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy. METHODS: Here we describe DecodeME, an ongoing study co-produced by people with lived experience of ME/CFS and scientists. Together we designed the study and obtained funding and are now recruiting up to 25,000 people in the UK with a clinical diagnosis of ME/CFS. Those eligible for the study are at least 16 years old, pass international study criteria, and lack any alternative diagnoses that can result in chronic fatigue. These will include 5,000 people whose ME/CFS diagnosis was a consequence of SARS-CoV-2 infection. Questionnaires are completed online or on paper. Participants' saliva DNA samples are acquired by post, which improves participation by more severely-affected individuals. Digital marketing and social media approaches resulted in 29,000 people with ME/CFS in the UK pre-registering their interest in participating. We will perform a genome-wide association study, comparing participants' genotypes with those from UK Biobank as controls. This should generate hypotheses regarding the genes, mechanisms and cell types contributing to ME/CFS disease aetiology. DISCUSSION: The DecodeME study has been reviewed and given a favourable opinion by the North West - Liverpool Central Research Ethics Committee (21/NW/0169). Relevant documents will be available online ( www.decodeme.org.uk ). Genetic data will be disseminated as associated variants and genomic intervals, and as summary statistics. Results will be reported on the DecodeME website and via open access publications.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Adolescente , Síndrome de Fatiga Crónica/genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , SARS-CoV-2
2.
NIHR Open Res ; 3: 20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881452

RESUMEN

Background: People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) experience core symptoms of post-exertional malaise, unrefreshing sleep, and cognitive impairment. Despite numbering 0.2-0.4% of the population, no laboratory test is available for their diagnosis, no effective therapy exists for their treatment, and no scientific breakthrough regarding pathogenesis has been made. It remains unknown, despite decades of small-scale studies, whether individuals experience different types of ME/CFS separated by onset-type, sex or age. Methods: DecodeME is a large population-based study of ME/CFS that recruited 17,074 participants in the first 3 months following full launch. Detailed questionnaire responses from UK-based participants who all reported being diagnosed with ME/CFS by a health professional provided an unparalleled opportunity to investigate, using logistic regression, whether ME/CFS severity or onset type is significantly associated with sex, age, illness duration, comorbid conditions or symptoms. Results: The well-established sex-bias among ME/CFS patients is evident in the initial DecodeME cohort: 83.5% of participants were females. What was not known previously was that females tend to have more comorbidities than males. Moreover, being female, being older and being over 10 years from ME/CFS onset are significantly associated with greater severity. Five different ME/CFS onset types were examined in the self-reported data: those with ME/CFS onset (i) after glandular fever (infectious mononucleosis); (ii) after COVID-19 infection; (iii) after other infections; (iv) without an infection at onset; and, (v) where the occurrence of an infection at or preceding onset is not known. Among other findings, ME/CFS onset with unknown infection status was significantly associated with active fibromyalgia. Conclusions: DecodeME participants differ in symptoms, comorbid conditions and/or illness severity when stratified by their sex-at-birth and/or infection around the time of ME/CFS onset.


Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) is a chronic disease that affects an estimated 250,000 people in the UK. Its defining symptom is post-exertional malaise, an excessive delayed worsening of symptoms following even minor physical or mental exertion. For those with it, ME/CFS means disability and poor quality of life. DecodeME is a research study which is looking for DNA differences between people with ME/CFS and people without any health problems. People with ME/CFS who take part in DecodeME complete a questionnaire that assesses their symptoms and whether they will then be invited to donate a DNA sample. This paper analyses the answers to this questionnaire; we will publish results of the DNA analysis separately. So far, more than 17 thousand people with ME/CFS have completed the DecodeME questionnaire. Their answers help us to address the question: "Are there different types of ME/CFS linked to different causes and how severe it becomes?" Results show that people with ME/CFS do not form a single group reporting similar symptoms and additional medical conditions. Instead, participants who had an infection at the start of their ME/CFS reported a different pattern of symptoms and conditions compared to those without an infection. It is well known that most people with ME/CFS are females. What was not clear previously was that females tend to have more additional health conditions. Also, being female, being older and being over 10 years from ME/CFS onset all make it more likely that someone is more severely affected by their ME/CFS. These findings could indicate that by studying people with different ME/CFS onset-types separately ­ rather than analysing all people with ME/CFS together ­ it will be easier to understand what is going wrong.

3.
Access Microbiol ; 4(3): 000341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693471

RESUMEN

The cytoskeleton serves a diverse set of functions in both multi- and unicellular organisms, including movement, transport, morphology, cell division and cell signalling. The septin family of cytoskeletal proteins are found within all fungi and metazoans and can generate three-dimensional scaffolds in vivo that promote membrane curvature, serve as physical barriers and coordinate cell cycle checkpoints. In budding yeast, the septins organize into polymerized filaments that decorate the division site between mother and daughter cells during mitosis; assembly of this structure at the 'bud neck' is critical for completion of cytokinesis and execution of numerous other cellular events. One such pathway includes bud site selection and the recruitment of proteins such as Bud4 and Bud3 that are responsible for promoting an axial budding pattern in haploid yeast. While Bud4 appears to be recruited to the septins independently of the presence of Bud3, it is likely that Bud3 can localize to the bud neck using both Bud4-dependent and Bud4-independent mechanisms. Furthermore, it remains unclear which precise domain or domains within Bud3 is/are both necessary and sufficient for optimal association at the septin structure. In this study, we examined the localization of GFP-Bud3 constructs in otherwise wild-type (WT) haploid yeast cells expressing Cdc10-mCherry using fluorescence microscopy; we tested a collection of N- and C-terminal truncations and fusions of separate Bud3 protein elements to identify the smallest domain(s) responsible for bud neck localization. We found that the coordinate action of the central amphipathic helix (residues 847-865) and a partially conserved C-terminal motif (residues 1172-1273) was sufficient to promote bud neck recruitment in the presence of endogenous Bud3. This domain is considerably smaller than the previously characterized C-terminal portion required to physically interact with Bud4 (1221-1636) and utilizes a similar mechanism of pairing membrane association, with a separate localization domain, similar to other non-septin proteins targeted to the division site during cell division.

4.
Front Immunol ; 13: 1051008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518761

RESUMEN

Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Bovinos , Animales , Virus de la Dermatosis Nodular Contagiosa/fisiología , Dermatosis Nodular Contagiosa/prevención & control , Mosquitos Vectores , Inmunidad Celular , Búfalos , Inmunoglobulina M
5.
Access Microbiol ; 3(12): 000301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35024561

RESUMEN

The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5' end of the crRNA.

6.
Artículo en Inglés | MEDLINE | ID: mdl-30766726

RESUMEN

BACKGROUND: The bacterial CRISPR/Cas genome editing system has provided a major breakthrough in molecular biology. One use of this technology is within a nuclease-based gene drive. This type of system can install a genetic element within a population at unnatural rates. Combatting of vector-borne diseases carried by metazoans could benefit from a delivery system that bypasses traditional Mendelian laws of segregation. Recently, laboratory studies in fungi, insects, and even mice, have demonstrated successful propagation of CRISPR gene drives and the potential utility of this type of mechanism. However, current gene drives still face challenges including evolved resistance, containment, and the consequences of application in wild populations. Additional research into molecular mechanisms that would allow for control, titration, and inhibition of drive systems is needed. RESULTS: In this study, we use artificial gene drives in budding yeast to explore mechanisms to modulate nuclease activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences (both NLS and NES) on Cas9 fusion proteins in vivo through fluorescence microscopy and genomic editing. Our results demonstrate that mutational substitutions to nuclear signals and combinatorial fusions can both modulate the level of gene drive activity within a population of cells. CONCLUSIONS: These findings have implications for control of traditional nuclease-dependent editing and use of gene drive systems within other organisms. For instance, initiation of a nuclear export mechanism to Cas9 could serve as a molecular safeguard within an active gene drive to reduce or eliminate editing.

7.
J Surg Res ; 103(1): 41-6, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11855916

RESUMEN

OBJECTIVE: In view of the recognized association between thrombosis and atherosclerosis, it is hypothesized that exposure of arterial smooth muscle cells (SMC) to thrombogenic agents such as platelets and thrombin will alter the oxidation of low-density lipoprotein (LDL) and that this effect may be diminished by thrombin inhibition. METHODS: Quiescent human aortic SMC in culture were exposed to LDL (40 microg protein/ml) alone or with washed human platelets (5 x 10(6)/ml), thrombin (40 units/ml), or a combination of these agents for 48 h. The media were removed, and both media and cell lysate fractions were assayed for malondialdehyde (MDA) content as an index of oxidation. Isolated platelets exposed to LDL and thrombin were studied in a similar manner to determine their individual oxidative activity. Finally, SMC and platelets were incubated with LDL and varying concentrations of thrombin (10-80 units/ml), both alone and in the presence of the thrombin inhibitors hirudin (u/u), and heparin (u/u), and MDA was measured. RESULTS: SMC and platelets each demonstrated an ability to oxidize LDL, increasing MDA concentrations by 1.8- (P < 0.05) and 4- (P < 0.01) fold, respectively, compared to lipid-free media. Both platelets (P < 0.05) and thrombin (P < 0.001) enhanced the oxidation of LDL by SMC, while a combination of these two agents resulted in an additive effect (P < 0.001). The SMC lysate fraction showed an increase in oxidative products following exposure to platelets (P < 0.01) but not thrombin, suggesting that platelets stimulated uptake of the oxidized lipid by the SMC. Isolated platelets responded to thrombin with an increase in MDA within the media (P < 0.001). Smooth muscle cells exposed to thrombin also showed a dose-dependent increase in LDL oxidation (P < 0.01). This effect was not altered by hirudin, but was significantly inhibited by heparin (P < 0.05). CONCLUSIONS: These results indicate that the oxidative potential of SMC and platelets is enhanced by their coincubation and by their concurrent exposure to thrombin. Heparin appears to block thrombin-stimulated oxidation. This interaction could be relevant to the dynamic interaction between atherosclerosis and thrombogenesis.


Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Aorta/citología , Arteriosclerosis/metabolismo , Comunicación Celular/fisiología , Células Cultivadas , Fibrinolíticos/farmacología , Hemostáticos/farmacología , Hirudinas/farmacología , Humanos , Malondialdehído/metabolismo , Oxidación-Reducción , Trombina/farmacología , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA