Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Annu Rev Biochem ; 87: 159-185, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29589959

RESUMEN

Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.


Asunto(s)
Flavinas/metabolismo , Halogenación/genética , Halogenación/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Biocatálisis , Dominio Catalítico/genética , Evolución Molecular Dirigida , Diseño de Fármacos , Estabilidad de Enzimas/genética , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Mutagénesis , Oxidorreductasas/química , Especificidad por Sustrato
2.
Nature ; 604(7905): 304-309, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418633

RESUMEN

Over the last five years prior to the Glasgow Climate Pact1, 154 Parties have submitted new or updated 2030 mitigation goals in their nationally determined contributions and 76 have put forward longer-term pledges. Quantifications of the pledges before the 2021 United Nations Climate Change Conference (COP26) suggested a less than 50 per cent chance of keeping warming below 2 degrees Celsius2-5. Here we show that warming can be kept just below 2 degrees Celsius if all conditional and unconditional pledges are implemented in full and on time. Peak warming could be limited to 1.9-2.0 degrees Celsius (5%-95% range 1.4-2.8 °C) in the full implementation case-building on a probabilistic characterization of Earth system uncertainties in line with the Working Group I contribution to the Sixth Assessment Report6 of the Intergovernmental Panel on Climate Change (IPCC). We retrospectively project twenty-first-century warming to show how the aggregate level of ambition changed from 2015 to 2021. Our results rely on the extrapolation of time-limited targets beyond 2030 or 2050, characteristics of the IPCC 1.5 °C Special Report (SR1.5) scenario database7 and the full implementation of pledges. More pessimistic assumptions on these factors would lead to higher temperature projections. A second, independent emissions modelling framework projected peak warming of 1.8 degrees Celsius, supporting the finding that realized pledges could limit warming to just below 2 degrees Celsius. Limiting warming not only to 'just below' but to 'well below' 2 degrees Celsius or 1.5 degrees Celsius urgently requires policies and actions to bring about steep emission reductions this decade, aligned with mid-century global net-zero CO2 emissions.


Asunto(s)
Política Ambiental , Calentamiento Global , Cooperación Internacional , Temperatura , Planeta Tierra , Política Ambiental/legislación & jurisprudencia , Calentamiento Global/legislación & jurisprudencia , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XXI , Cooperación Internacional/legislación & jurisprudencia , Paris , Estudios Retrospectivos , Factores de Tiempo , Naciones Unidas/legislación & jurisprudencia
3.
Chem Rev ; 123(16): 10381-10431, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37524057

RESUMEN

The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.


Asunto(s)
Ingeniería de Proteínas , Catálisis
4.
Angew Chem Int Ed Engl ; 63(13): e202317860, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38280216

RESUMEN

Single component flavin-dependent halogenases (FDHs) possess both flavin reductase and FDH activity in a single enzyme. We recently reported that the single component FDH AetF catalyzes site-selective bromination and iodination of a variety of aromatic substrates and enantioselective bromolactonization and iodoetherification of styrenes bearing pendant carboxylic acid or alcohol substituents. Given this inherent reactivity and selectivity, we explored the utility of AetF as catalyst for alkene and alkyne C-H halogenation. We find that AetF catalyzes halogenation of a range of 1,1-disubstituted styrenes, often with high stereoselectivity. Despite the utility of haloalkenes for cross-coupling and other applications, accessing these compounds in a stereoselective manner typically requires functional group interconversion processes, and selective halogenation of 1,1'-disubstituted olefins remains rare. We also establish that AetF and homologues of this enzyme can halogenate terminal alkynes. Mutagenesis studies and deuterium kinetic isotope effects are used to support a mechanistic proposal involving covalent catalysis for halogenation of unactivated alkynes by AetF homologues. These findings expand the scope of FDH catalysis and continue to show the unique utility of single component FDHs for biocatalysis.


Asunto(s)
Alquenos , Halogenación , Alquenos/química , Alquinos , Flavinas/química , Estirenos
5.
Chirality ; 35(8): 452-460, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36916449

RESUMEN

In nature, flavin-dependent halogenases (FDHs) catalyze site-selective chlorination and bromination of aromatic natural products. This ability has led to extensive efforts to engineer FDHs for selective chlorination, bromination, and iodination of electron rich aromatic compounds. On the other hand, FDHs are unique among halogenases and haloperoxidases that exhibit catalyst-controlled site selectivity in that no examples of enantioselective FDH catalysis in natural product biosynthesis have been characterized. Over the past several years, our group has established that FDHs can catalyze enantioselective reactions involving desymmetrization, atroposelective halogenation, and halocyclization. Achieving high activity and selectivity for these reactions has required extensive mutagenesis and mitigation of problems resulting from hypohalous acid generated during FDH catalysis. The single-component flavin reductase/FDH AetF is unique among the wild type enzyme we have studied in that it provides high activity and selectivity toward several asymmetric transformations. These results highlight the ability of FDH active sites to tolerate different substrate topologies and suggest that they could be useful for a broad range of oxidative halogenations.


Asunto(s)
Flavinas , Halogenación , Estereoisomerismo , Catálisis , Dominio Catalítico , Flavinas/química , Flavinas/metabolismo
6.
Angew Chem Int Ed Engl ; 62(51): e202312893, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37874184

RESUMEN

Despite the unique reactivity of vitamin B12 and its derivatives, B12 -dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12 -dependent transcription factor CarH to enable non-native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ- and δ-lactams through either redox-neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12 cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3-diene products instead of 1,4-dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12 and expanding the synthetic utility of B12 -dependent enzymes.


Asunto(s)
Factores de Transcripción , Vitamina B 12 , Ciclización , Factores de Transcripción/metabolismo , Biocatálisis , Lactamas
7.
Angew Chem Int Ed Engl ; 62(15): e202301370, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757808

RESUMEN

FeII - and α-ketoglutarate-dependent halogenases and oxygenases can catalyze site-selective functionalization of C-H bonds via a variety of C-X bond forming reactions, but achieving high chemoselectivity for functionalization using non-native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site-selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C-H functionalization with other non-native functional groups.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Hierro , Hierro/química , Oxigenasas , Compuestos Ferrosos/química , Aminas
8.
J Am Chem Soc ; 144(36): 16676-16682, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044712

RESUMEN

In this study, we engineer a variant of the flavin-dependent halogenase RebH that catalyzes site- and atroposelective halogenation of 3-aryl-4(3H)-quinazolinones via kinetic or dynamic kinetic resolution. The required directed evolution uses a combination of random and site-saturation mutagenesis, substrate walking using two probe substrates, and a two-tiered screening approach involving the analysis of variant conversion and then enantioselectivity of improved variants. The resulting variant, 3-T, provides >99:1 e.r. for the (M)-atropisomer of the major brominated product, 25-fold improved conversion, and 91-fold improved site selectivity relative to the parent enzyme on the probe substrate used in the final rounds of evolution. This high activity and selectivity translate well to several additional substrates with varied steric and electronic properties. Computational modeling and docking simulations are used to rationalize the effects of key mutations on substrate binding. Given the range of substrates that have been used for atroposelective synthesis via electrophilic halogenation in the literature, these results suggest that flavin-dependent halogenases (FDHs) could find many additional applications for atroposelective catalysis. More broadly, this study highlights how RebH can be engineered to accept structurally diverse substrates that enable its use for enantioselective catalysis.


Asunto(s)
Flavinas , Halogenación , Dinitrocresoles , Flavinas/metabolismo , Quinazolinonas
9.
Inorg Chem ; 61(36): 14477-14485, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044713

RESUMEN

Mononuclear non-heme Fe(II)- and α-ketoglutarate-dependent oxygenases (FeDOs) catalyze a site-selective C-H hydroxylation. Variants of these enzymes in which a conserved Asp/Glu residue in the Fe(II)-binding facial triad is replaced by Ala/Gly can, in some cases, bind various anionic ligands and catalyze non-native chlorination and bromination reactions. In this study, we explore the binding of different anions to an FeDO facial triad variant, SadX, and the effects of that binding on HO• vs X• rebound. We establish not only that chloride and bromide enable non-native halogenation reactions but also that all anions investigated, including azide, cyanate, formate, and fluoride, significantly accelerate and influence the site selectivity of SadX hydroxylation catalysis. Azide and cyanate also lead to the formation of products resulting from N3•, NCO•, and OCN• rebound. While fluoride rebound is not observed, the rate acceleration provided by this ligand leads us to calculate barriers for HO• and F• rebound from a putative Fe(III)(OH)(F) intermediate. These calculations suggest that the lack of fluorination is due to the relative barriers of the HO• and F• rebound transition states rather than an inaccessible barrier for F• rebound. Together, these results improve our understanding of the FeDO facial triad variant tolerance of different anionic ligands, their ability to promote rebound involving these ligands, and inherent rebound preferences relative to HO• that will aid efforts to develop non-native catalysis using these enzymes.


Asunto(s)
Ácidos Cetoglutáricos , Oxigenasas , Azidas , Cianatos , Compuestos Férricos , Compuestos Ferrosos/química , Fluoruros , Ácidos Cetoglutáricos/química , Ligandos , Oxigenasas/metabolismo
10.
J Electrochem Soc ; 169(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35812015

RESUMEN

The catalytic reduction of ethyl chloroacetate (ECA) by hydroxocobalamin (HOCbl) in dimethylformamide was studied electrochemically and spectroelectrochemically to identify initial steps in the reaction between the electrogenerated Co(I) center of cobalamin (cob(I)alamin) and ECA. Cyclic voltammograms of HOCbl in the presence of ECA show a small increase in current related to reduction of Co(II) to Co(I), and a new peak at more negative potentials related to reduction of an ethyl carboxymethyl-Cbl intermediate. The oxidation state of HOCbl during catalysis was monitored by means of spectroelectrochemical controlled-potential bulk electrolysis. Addition of ECA to electrogenerated cob(I)alamin initially generates the Co(II) form (cob(II)alamin) followed by a gradual formation of an ethyl carboxymethyl-Cbl intermediate. Controlled-potential bulk electrolysis was performed to identify products formed from catalytic reduction of ECA by electrogenerated cob(I)alamin and quantify the number of electrons transferred per molecule of ECA. Product distributions and coulometric results, together with the results of voltammograms and spectroelectrochemical controlled-potential bulk electrolysis, were interpreted to propose a reaction mechanism.

11.
Angew Chem Int Ed Engl ; 61(51): e202214610, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36282507

RESUMEN

Flavin-dependent halogenases (FDHs) natively catalyze selective halogenation of electron rich aromatic and enolate groups. Nearly all FDHs reported to date require a separate flavin reductase to supply them with FADH2 , which complicates biocatalysis applications. In this study, we establish that the single component flavin reductase/flavin dependent halogenase AetF catalyzes halogenation of a diverse set of substrates using a commercially available glucose dehydrogenase to drive its halogenase activity. High site selectivity, activity on relatively unactivated substrates, and high enantioselectivity for atroposelective bromination and bromolactonization was demonstrated. Site-selective iodination and enantioselective cycloiodoetherification was also possible using AetF. The substrate and reaction scope of AetF suggest that it has the potential to greatly improve the utility of biocatalytic halogenation.


Asunto(s)
Alquenos , Oxidorreductasas , Oxidorreductasas/metabolismo , Halogenación , Flavinas/metabolismo , Biocatálisis
12.
Angew Chem Int Ed Engl ; 60(44): 23672-23677, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34288306

RESUMEN

Artificial metalloenzymes (ArMs) are commonly used to control the stereoselectivity of catalytic reactions, but controlling chemoselectivity remains challenging. In this study, we engineer a dirhodium ArM to catalyze diazo cross-coupling to form an alkene that, in a one-pot cascade reaction, is reduced to an alkane with high enantioselectivity (typically >99 % ee) by an alkene reductase. The numerous protein and small molecule components required for the cascade reaction had minimal effect on ArM catalysis. Directed evolution of the ArM led to improved yields and E/Z selectivities for a variety of substrates, which translated to cascade reaction yields. MD simulations of ArM variants were used to understand the structural role of the cofactor on ArM conformational dynamics. These results highlight the ability of ArMs to control both catalyst stereoselectivity and chemoselectivity to enable reactions in complex media that would otherwise lead to undesired side reactions.

13.
Acc Chem Res ; 52(3): 576-584, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30830755

RESUMEN

Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or site-selective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.


Asunto(s)
Metaloproteínas/química , Rodio/química , Serina Endopeptidasas/química , Catálisis , Metaloproteínas/genética , Mutación , Prolil Oligopeptidasas , Ingeniería de Proteínas , Pyrococcus/enzimología , Serina Endopeptidasas/genética
14.
Chem Rev ; 118(1): 142-231, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28714313

RESUMEN

The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.


Asunto(s)
Metaloproteínas/metabolismo , Alquilación , Animales , Biocatálisis , Humanos , Hidrogenación , Iminas/química , Iminas/metabolismo , Cetonas/química , Cetonas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ingeniería de Proteínas
15.
Angew Chem Int Ed Engl ; 59(27): 10873-10877, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32196853

RESUMEN

Mono-N-protected amino acids (MPAAs) are increasingly common ligands in Pd-catalyzed C-H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C-H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand-accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand-to-metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C-H activation and catalytic C-H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50-100-fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII . These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C-H activation at multiple PdII centers.


Asunto(s)
Aminoácidos/química , Paladio/química , Carbono/química , Catálisis , Hidrógeno/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos
16.
Biochemistry ; 58(12): 1616-1626, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30786206

RESUMEN

Enzymes in the prolyl oligopeptidase family possess unique structures and substrate specificities that are important for their biological activity and for potential biocatalytic applications. The crystal structures of Pyrococcus furiosus ( Pfu) prolyl oligopeptidase (POP) and the corresponding S477C mutant were determined to 1.9 and 2.2 Å resolution, respectively. The wild type enzyme crystallized in an open conformation, indicating that this state is readily accessible, and it contained bound chloride ions and a prolylproline ligand. These structures were used as starting points for molecular dynamics simulations of Pfu POP conformational dynamics. The simulations showed that large-scale domain opening and closing occurred spontaneously, providing facile substrate access to the active site. Movement of the loop containing the catalytically essential histidine into a conformation similar to those found in structures with fully formed catalytic triads also occurred. This movement was modulated by chloride binding, providing a rationale for experimentally observed activation of POP peptidase catalysis by chloride. Thus, the structures and simulations reported in this study, combined with existing biochemical data, provide a number of insights into POP catalysis.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus furiosus/enzimología , Serina Endopeptidasas/química , Proteínas Arqueales/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Prolil Oligopeptidasas , Conformación Proteica , Dominios Proteicos , Serina Endopeptidasas/genética
17.
J Am Chem Soc ; 140(2): 546-549, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29294291

RESUMEN

Extensive effort has been devoted to engineering flavin-dependent halogenases (FDHs) with improved stability, expanded substrate scope, and altered regioselectivity. Here, we show that variants of rebeccamycin halogenase (RebH) catalyze enantioselective desymmetrization of methylenedianilines via halogenation of these substrates distal to their pro-stereogenic center. Structure-guided engineering was used to increase the conversion and selectivity of these reactions, and the synthetic utility of the halogenated products was shown via conversion of to a chiral α-substituted indole. These results constitute the first reported examples of asymmetric catalysis by FDHs.


Asunto(s)
Compuestos de Anilina/química , Cloruro de Metileno/química , Catálisis , Flavinas/química , Halogenación , Estructura Molecular , Ingeniería de Proteínas , Estereoisomerismo
18.
Chembiochem ; 18(21): 2099-2103, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28879681

RESUMEN

The remarkable site selectivity and broad substrate scope of flavin-dependent halogenases (FDHs) has led to much interest in their potential as biocatalysts. Multiple engineering efforts have demonstrated that FDHs can be tuned for non-native substrate scope and site selectivity. FDHs have also proven useful as in vivo biocatalysts and have been successfully incorporated into biosynthetic pathways to build new chlorinated aromatic compounds in several heterologous organisms. In both cases, reduced flavin cofactor, usually supplied by a separate flavin reductase (FR), is required. Herein, we report functional synthetic, fused FDH-FR proteins containing various FDHs and FRs joined by different linkers. We show that FDH-FR fusion proteins can increase product titers compared to the individual components for in vivo biocatalysis in Escherichia coli.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , FMN Reductasa/metabolismo , Halogenación , Hidrocarburos Halogenados/metabolismo , Oxidorreductasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , FMN Reductasa/genética , Hidrocarburos Halogenados/química , Estructura Molecular , Oxidorreductasas/genética , Proteínas Recombinantes de Fusión/genética
19.
Chembiochem ; 16(13): 1880-1883, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26097041

RESUMEN

A bicyclo[6,1,0]nonyne-substituted 9-mesityl-10-methyl-acridinium cofactor was prepared and covalently linked to a prolyl oligopeptidase scaffold containing a genetically encoded 4-azido-L-phenylalanine residue in its active site. The resulting artificial enzyme catalyzed sulfoxidation when irradiated with visible light in the presence of air. This reaction proceeds by initial electron abstraction from the sulfide within the enzyme active site, and the protein scaffold extended the fluorescence lifetime of the acridium cofactor. The mode of sulfide activation and placement of the acridinium cofactor (5) in POP-ZA4 -5 make this artificial enzyme a promising platform for developing selective photocatalytic transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA