Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 37(42): 14659-63, 1998 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-9778340

RESUMEN

Non-heme diiron clusters occur in a number of enzymes (e.g., ribonucleotide reductase, methane monooxygenase, and Delta9-stearoyl-ACP desaturase) that activate O2 for chemically difficult oxidation reactions. In each case, a kinetically labile peroxo intermediate is believed to form when O2 reacts with the diferrous enzyme, followed by O-O bond cleavage and the formation of high-valent iron intermediates [formally Fe(IV)] that are thought to be the reactive oxidants. Greater kinetic stability of a peroxodiiron(III) intermediate in protein R2 of ribonucleotide reductase was achieved by the iron-ligand mutation Asp84 --> Glu and the surface mutation Trp48 --> Phe. Here, we present the first definitive evidence for a bridging, symmetrical peroxo adduct from vibrational spectroscopic studies of the freeze-trapped intermediate of this mutant R2. Isotope-sensitive bands are observed at 870, 499, and 458 cm-1 that are assigned to the intraligand peroxo stretching frequency and the asymmetric and symmetric Fe-O2-Fe stretching frequencies, respectively. Similar results have been obtained in the resonance Raman spectroscopic study of a peroxodiferric species of Delta9-stearoyl-ACP desaturase [Broadwater, J. A., Ai, J., Loehr, T. M., Sanders-Loehr, J., and Fox, B. G. (1998) Biochemistry 37, 14664-14671]. Similarities among these adducts and transient species detected during O2 activation by methane monooxygenase hydroxylase, ferritin, and wild-type protein R2 suggest the symmetrical peroxo adduct as a common intermediate in the diverse oxidation reactions mediated by members of this class.


Asunto(s)
Hierro/metabolismo , Mutagénesis Sitio-Dirigida , Oxígeno/metabolismo , Peróxidos/metabolismo , Ribonucleótido Reductasas/genética , Oxidación-Reducción , Isótopos de Oxígeno , Fenilalanina/genética , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Espectrometría Raman , Triptófano/genética
2.
Biochemistry ; 37(4): 1124-30, 1998 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-9454605

RESUMEN

Protein R2 of ribonucleotide reductase from Escherichia coli contains a dinuclear iron cluster, which reductively activates O2 to produce the enzyme's functionally essential tyrosyl radical by one-electron oxidation of residue Y122. A key step in this reaction is the rapid injection of a single electron from an exogenous reductant (Fe2+ or ascorbate) during formation of the radical-generating intermediate, cluster X, from the diiron(II) cluster and O2. As this step leaves only one of the two oxidizing equivalents of the initial diiron(II)-O2 adduct, it commits the reaction to a one-electron oxidation outcome and precludes possible two-electron alternatives (as occur in the related diiron bacterial alkane hydroxylases and fatty acyl desaturases). In the F208Y site-directed mutant of R2, Y208 is hydroxylated (a two-electron oxidation) in preference to the normal reaction [Aberg, A., Ormö, M., Nordlund, P., & Sjöberg, B. M. (1993) Biochemistry 32, 9845-9850], implying that this substitution blocks electron injection or (more likely) introduces an endogenous reductant (Y208) that effectively competes. Here we demonstrate that O2 activation in the F208Y mutant of R2 partitions between these two-electron (Y208 hydroxylation) and one-electron (Y122 radical production) outcomes and that the latter becomes predominant under conditions which favor electron injection (namely, high concentration of the reductant ascorbate). Moreover, we show that the sensitivity of the partition ratio to ascorbate concentration is strictly dependent on the integrity of a hydrogen-bond network involving the near surface residue W48: when this residue is substituted with F, Y208 hydroxylation predominates irrespective of ascorbate concentration. These data suggest that the hydrogen-bond network involving W48 is a specific electron-transfer pathway between the cofactor site and the protein surface.


Asunto(s)
Escherichia coli/enzimología , Hierro/metabolismo , Metaloproteínas/metabolismo , Oxígeno/metabolismo , Ribonucleótido Reductasas/metabolismo , Ácido Ascórbico/metabolismo , Catecoles/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Metaloproteínas/genética , Mutación , Fenilalanina/genética , Proteínas Recombinantes/metabolismo , Ribonucleótido Reductasas/genética , Espectrofotometría , Espectroscopía de Mossbauer , Tirosina/genética
3.
J Am Chem Soc ; 123(29): 7017-30, 2001 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-11459480

RESUMEN

The outcome of O2 activation at the diiron(II) cluster in the R2 subunit of Escherichia coli (class I) ribonucleotide reductase has been rationally altered from the normal tyrosyl radical (Y122*) production to self-hydroxylation of a phenylalanine side-chain by two amino acid substitutions that leave intact the (histidine)2-(carboxylate)4 ligand set characteristic of the diiron-carboxylate family. Iron ligand Asp (D) 84 was replaced with Glu (E), the amino acid found in the cognate position of the structurally similar diiron-carboxylate protein, methane monooxygenase hydroxylase (MMOH). We previously showed that this substitution allows accumulation of a mu-1,2-peroxodiiron(III) intermediate, which does not accumulate in the wild-type (wt) protein and is probably a structural homologue of intermediate P (H(peroxo)) in O2 activation by MMOH. In addition, the near-surface residue Trp (W) 48 was replaced with Phe (F), blocking transfer of the "extra" electron that occurs in wt R2 during formation of the formally Fe(III)Fe(IV) cluster X. Decay of the mu-1,2-peroxodiiron(III) complex in R2-W48F/D84E gives an initial brown product, which contains very little Y122* and which converts very slowly (t1/2 approximately 7 h) upon incubation at 0 degrees C to an intensely purple final product. X-ray crystallographic analysis of the purple product indicates that F208 has undergone epsilon-hydroxylation and the resulting phenol has shifted significantly to become a ligand to Fe2 of the diiron cluster. Resonance Raman (RR) spectra of the purple product generated with 16O2 or 18O2 show appropriate isotopic sensitivity in bands assigned to O-phenyl and Fe-O-phenyl vibrational modes, confirming that the oxygen of the Fe(III)-phenolate species is derived from O2. Chemical analysis, experiments involving interception of the hydroxylating intermediate with exogenous reductant, and Mössbauer and EXAFS characterization of the brown and purple species establish that F208 hydroxylation occurs during decay of the peroxo complex and formation of the initial brown product. The slow transition to the purple Fe(III)-phenolate species is ascribed to a ligand rearrangement in which mu-O2- is lost and the F208-derived phenolate coordinates. The reprogramming to F208 monooxygenase requires both amino acid substitutions, as very little epsilon-hydroxyphenylalanine is formed and pathways leading to Y122* formation predominate in both R2-D84E and R2-W48F.


Asunto(s)
Escherichia coli/enzimología , Mutagénesis Sitio-Dirigida , Ribonucleótido Reductasas/química , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Hidroxilación , Hierro , Ligandos , Isótopos de Oxígeno , Oxigenasas , Ribonucleótido Reductasas/genética , Espectroscopía de Mossbauer , Análisis Espectral , Espectrometría Raman , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA