Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 234(1): 295-310, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997964

RESUMEN

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.


Asunto(s)
Begoniaceae , Begoniaceae/genética , Evolución Molecular , Genoma , Filogenia , Sintenía/genética
2.
Plant Physiol ; 185(4): 1309-1324, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793868

RESUMEN

Parasitic plants are mostly viewed as pests. This is caused by several species causing serious damage to agriculture and forestry. There is however much more to parasitic plants than presumed weeds. Many parasitic plans exert even positive effects on natural ecosystems and human society, which we review in this paper. Plant parasitism generally reduces the growth and fitness of the hosts. The network created by a parasitic plant attached to multiple host plant individuals may however trigger transferring systemic signals among these. Parasitic plants have repeatedly been documented to play the role of keystone species in the ecosystems. Harmful effects on community dominants, including invasive species, may facilitate species coexistence and thus increase biodiversity. Many parasitic plants enhance nutrient cycling and provide resources to other organisms like herbivores or pollinators, which contributes to facilitation cascades in the ecosystems. There is also a long tradition of human use of parasitic plants for medicinal and cultural purposes worldwide. Few species provide edible fruits. Several parasitic plants are even cultivated by agriculture/forestry for efficient harvesting of their products. Horticultural use of some parasitic plant species has also been considered. While providing multiple benefits, parasitic plants should always be used with care. In particular, parasitic plant species should not be cultivated outside their native geographical range to avoid the risk of their uncontrolled spread and the resulting damage to ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Interacciones Huésped-Parásitos/fisiología , Plantas/parasitología , República Checa
3.
Hum Mol Genet ; 28(7): 1173-1182, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544224

RESUMEN

Hidradenitis suppurativa (HS), or acne inversa, is a chronic inflammatory skin disorder characterized clinically with acne-like lesions in apocrine gland-bearing skin, follicular occlusion and recurrent inflammation. Thirty-four unique mutations in patients with HS have been found in three genes encoding the γ-secretase complex: nicastrin (NCSTN), presenilin 1 (PSEN1), presenilin enhancer 2 (PSENEN) and in POGLUT1, an endoplasmic reticulum O-glucosyltransferase involved in Notch signaling. We have carried out a system review and have performed a functional analysis of the 34 unique reported HS-linked mutations in NCSTN, PSEN1, PSENEN and POGLUT1. We have also examined the effects of the HS-linked PSEN1-P242LfsX11 mutation on cytokine and chemokine expression in macrophages. Mutations in NCSTN are predicted to cause loss of function, to result in loss of transmembrane (TM) domain, to affect NCSTN substrate recruitment sites, to cause loss or creation of new ligand binging sites and to alter post-translational modifications and disulfide bonds. PSEN1-P242LfsX11 occurs at the opposite side of TM5 from Alzheimer's disease-linked PSEN1 mutations. All of the PSENEN mutations occur on TM regions that are predicted to disrupt membrane function. POGLUT1 mutations lead to an early termination of protein synthesis and are predicted to affect ligand binding function. In addition, PSEN1-P242LfsX11 mediates cytokine and chemokine expression and prolongs tumor necrosis factor α production on the inflammatory processes in THP-1 cells and phorbol-12-myristate-13-acetate-differentiated macrophages in response to lipopolysaccharide stimulation. These in silico analyses are instructive for functional studies of the HS-linked mutations. The PSEN1-P242LfsX11 mutation mediates cytokine and chemokine expression in macrophages.


Asunto(s)
Hidradenitis Supurativa/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica/genética , Glucosiltransferasas/genética , Hidradenitis Supurativa/fisiopatología , Humanos , Macrófagos/metabolismo , Macrófagos/fisiología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Mutación/genética , Presenilina-1/genética , Presenilina-2/genética
4.
Hum Mol Genet ; 26(8): 1472-1482, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28186563

RESUMEN

SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability.


Asunto(s)
Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Discapacidades del Desarrollo/genética , Proteínas de Drosophila/genética , Factores de Transcripción SOXD/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Animales , Discapacidades del Desarrollo/patología , Drosophila/genética , Silenciador del Gen , Estudios de Asociación Genética , Humanos , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/patología , Interferencia de ARN , Vía de Señalización Wnt/genética
5.
New Phytol ; 221(1): 470-481, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30078224

RESUMEN

Despite their ubiquitous distribution and significant ecological roles, soil microorganisms have long been neglected in investigations addressing parasitic plant-host interactions. Because nutrient deprivation is a primary cause of host damage by parasitic plants, we hypothesized that beneficial soil microorganisms conferring nutrient benefits to parasitized hosts may play important roles in alleviating damage. We conducted a pot cultivation experiment to test the inoculation effect of an arbuscular mycorrhizal fungus (Glomus mosseae), a rhizobium (Rhizobium leguminosarum) and their interactive effects, on alleviation of damage to a legume host (Trifolium repens) by two root hemiparasitic plants with different nutrient requirements (N-demanding Pedicularis rex and P-demanding P. tricolor). Strong interactive effects between inoculation regimes and hemiparasite identity were observed. The relative benefits of microbial inoculation were related to hemiparasite nutrient requirements. Dual inoculation with the rhizobium strongly enhanced promotional arbuscular mycorrhizal effects on hosts parasitized by P. rex, but reduced the arbuscular mycorrhizal promotion on hosts parasitized by P. tricolor. Our results demonstrate substantial contribution of arbuscular mycorrhizal and rhizobial symbioses to alleviating damage to the legume host by root hemiparasites, and suggest that soil microorganisms are critical factors regulating host-parasite interactions and should be taken into account in future studies.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Micorrizas/fisiología , Pedicularis/fisiología , Rhizobium leguminosarum/fisiología , Trifolium/microbiología , Trifolium/parasitología , Inoculantes Agrícolas , Glomeromycota/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Simbiosis/fisiología , Trifolium/fisiología
6.
Prep Biochem Biotechnol ; 47(3): 254-260, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-27558450

RESUMEN

Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m2/h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m2/h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.


Asunto(s)
Reactores Biológicos/microbiología , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentación , Levaduras/metabolismo , Clostridium acetobutylicum/crecimiento & desarrollo , Glucosa/metabolismo , Membranas Artificiales , Levaduras/crecimiento & desarrollo
7.
Artículo en Inglés | MEDLINE | ID: mdl-27721647

RESUMEN

Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.

8.
Breed Sci ; 66(3): 391-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27436949

RESUMEN

Amomum tsaoko is a flexistylous ginger. Flexistyly is a unique floral mechanism promoting outcrossing, which is known only in some species of Zingiberaceae till date. This is a pioneer report on flexistyly in A. tsaoko from the aspect of fructification percentage to clarify its influence on reproduction. We observed in 2007 and 2008 that the fructification percentage of the anaflexistyled and the cataflexistyled inflorescence were 14.89 ± 10.35% and 11.31 ± 7.91% respectively, with significant difference (d.f. = 141.920, t = 2.518, P = 0.013 < 0.05). The greatly significant difference between 2007 and 2008 were present in both the flower number (d.f. = 93, t = -2.819, P = 0.006 < 0.01) and the fructification percentage (d.f. = 93, t = -2.894, P = 0.005 < 0.01) of the cataflexistylous inflorescence. Although the two morphs were similar in morphological characteristics, there was some gender differentiation between them, showing a possibility that the anaflexistylous morph might function more as females and the cataflexistylous morph more as males. Reproduction of the cataflexistylous morph was significantly sensitive to change of environmental factors, in contrast to the anaflexistylous morph, thus the yield varied between the abundant year (2008) and the off year (2007).

9.
Hum Mol Genet ; 22(18): 3798-806, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23696452

RESUMEN

The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/fisiología , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Animales , Animales Modificados Genéticamente , Silenciador del Gen , Corazón/fisiología , Humanos , Imagenología Tridimensional , Miocardio/ultraestructura , Miofibrillas/fisiología , Tomografía de Coherencia Óptica , Alas de Animales/crecimiento & desarrollo , Alas de Animales/fisiología , Proteínas Wnt/metabolismo
10.
J Plant Res ; 128(4): 563-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956077

RESUMEN

Root hemiparasitic plants show optimal growth when attached to a suitable host by abstracting water and nutrients. Despite the fact that damage to host plants in the wild occurs frequently in various forms (e.g. grazing), effects of host damage on growth and physiological performance of root hemiparasites remain unclear. In this study, host shoot clipping was conducted to determine the influence of host damage on photosynthetic and growth performance of a weedy root hemiparasite, Pedicularis kansuensis, and its interaction with a host, Elymus nutans. Photosynthetic capacity, tissue mineral nutrient content and plant biomass of P. kansuensis were significantly improved when attached to a host plant. Host clipping had no effect on quantum efficiency (ΦPSII), but significantly reduced the growth rate and biomass of P. kansuensis. In contrast, clipping significantly improved photosynthetic capacity and accumulation of potassium in E. nutans. No significant decrease in biomass was observed in clipped host plants. By changing nutrient absorption and allocation, clipping affected the interaction between P. kansuensis and its host. Our results showed that host clipping significantly suppressed the growth of weedy P. kansuensis, but did not affect biomass accumulation in E. nutans. We propose that grazing (a dominant way of causing host damage in the field) may have a potential in the control against the weedy hemiparasite.


Asunto(s)
Elymus/parasitología , Pedicularis/fisiología , Brotes de la Planta/fisiología , Control de Malezas/métodos , Clorofila/química , Fluorescencia , Fotosíntesis , Malezas/crecimiento & desarrollo
11.
Mycorrhiza ; 24(3): 187-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24077881

RESUMEN

Spatial expansion of root hemiparasitic Pedicularis kansuensis in Bayanbulak Grassland of Xinjiang Uygur Autonomous Region (China) has caused great loss of herbage yield and has threatened the local livestock industry. Current management practices using manual eradication and chemical control have been proved problematic. Arbuscular mycorrhizal (AM) fungi have been suggested to be potential biocontrol agents against a number of plant pests, but experimental evidence is lacking against weedy P. kansuensis. In this study, we tested the hypothesis that inoculation with AM fungi will cause growth depression in P. kansuensis and reduce its damage to host plants. Based on the confirmation of AM status and host community of the hemiparasite in the field, a pot cultivation experiment was conducted to test the influence of an AM fungus (Glomus mosseae) on growth of P. kansuensis and the parasitized host (Elymus nutans). AM colonization was observed in roots of P. kansuensis, but the levels were much lower than those of its adjacent host species. A negative correlation between AM levels and the numbers of haustoria was detected for the field samples of the hemiparasite. Strong suppression of haustorium formation, a significant reduction in plant dry weight (DW), as well as marked reduction in the survival rate of P. kansuensis after inoculation with AM fungi was observed. In contrast, inoculation with G. mosseae increased root DW and whole plant DW of parasitized host plants. Our findings demonstrated significantly repressive effects of AM fungi on growth performance of P. kansuensis with and without the presence of a host. The potential of AM fungi as biocontrol agents against the damaging hemiparasite was confirmed.


Asunto(s)
Glomeromycota/fisiología , Micorrizas/fisiología , Pedicularis/microbiología , Malezas/microbiología , Control de Malezas/métodos , China , Pedicularis/crecimiento & desarrollo , Malezas/crecimiento & desarrollo
12.
ACS Nano ; 18(12): 8971-8987, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38497600

RESUMEN

Immune checkpoint blockade (ICB) therapy has been approved for breast cancer (BC), but clinical response rates are limited. Recent studies have shown that commensal microbes colonize a variety of tumors and are closely related to the host immune system response. Here, we demonstrated that Fusobacterium nucleatum (F.n), which is prevalent in BC, creates an immunosuppressive tumor microenvironment (ITME) characterized by a high-influx of myeloid cells that hinders ICB therapy. Administering the antibiotic metronidazole in BC can deplete F.n and remodel the ITME. To prevent an imbalance in the systemic microbiota caused by antibiotic administration, we designed a biomimetic nanovehicle for on-site antibiotic delivery inspired by F.n homing to BC. Additionally, ferritin-nanocaged doxorubicin was coloaded into this nanovehicle, as immunogenic chemotherapy has shown potential for synergy with ICB. It has been demonstrated that this biomimetic nanovehicle can be precisely homed to BC and efficiently eliminate intratumoral F.n without disrupting the diversity and abundance of systemic microbiota. This ultimately remodels the ITME, improving the therapeutic efficacy of the PD-L1 blocker with a tumor inhibition rate of over 90% and significantly extending the median survival of 4T1 tumor-bearing mice.


Asunto(s)
Fusobacterium nucleatum , Neoplasias , Animales , Ratones , Antígeno B7-H1 , Biomimética , Antibacterianos , Inmunosupresores , Microambiente Tumoral
13.
Ann Bot ; 112(6): 1099-106, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23946321

RESUMEN

BACKGROUND AND AIMS: Facultative root hemiparasitic plants generally have a wide host range, but in most cases show an obvious host preference. The reasons for the marked difference in growth performance of hemiparasites when attached to different hosts are not fully understood. In this study, the hypothesis was tested that hemiparasites showing a preference for different hosts have different nutrient requirements. METHODS: Two facultative root hemiparasitic Pedicularis species (P. rex and P. tricolor) with a different host dependency and preference were used to test their responses to inorganic solutes. The effects of nitrogen, phosphorus and potassium on growth of the hemiparasitic plants not attached to a host were determined, using an orthogonal design in pot cultivation under greenhouse conditions. Variables including biomass, shoot nutrient concentration, root:shoot (R:S) ratios and the number of haustoria were measured. KEY RESULTS: As in autotrophic plants, nutrient deficiency reduced dry weight (DW) and nutrient concentrations in the root hemiparasites. Nitrogen and phosphorus significantly influenced growth of both Pedicularis species, while potassium availability influenced only shoot DW of P. rex. Nitrogen had far more effect on growth of P. rex than on P. tricolor, while phosphorus deficiency caused more marked growth depression in P. tricolor than in P. rex. Pedicularis rex grew faster than P. tricolor in a range of nutrient supplies. Different patterns of biomass allocation between the two Pedicularis species were observed. While P. rex invested more into roots (particularly fine rootlets) than P. tricolor, the number of haustoria produced by P. rex was relatively much lower than that produced by P. tricolor, which had a much smaller root system. CONCLUSIONS: The two Pedicularis species differ in nutrient requirements and biomass allocation. Distinct interspecific traits in growth and nutrient requirements can be driving forces for the differential interactions between hemiparasites and their hosts.


Asunto(s)
Nitrógeno/metabolismo , Pedicularis/metabolismo , Fósforo/metabolismo , Potasio/metabolismo , Biomasa , Especificidad del Huésped , Nitrógeno/análisis , Pedicularis/crecimiento & desarrollo , Fósforo/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Potasio/análisis , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Especificidad de la Especie
14.
Ann Bot ; 112(6): 1089-98, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23946322

RESUMEN

BACKGROUND AND AIMS: Because most parasitic plants do not form mycorrhizal associations, the nutritional roles of arbuscular mycorrhizal (AM) fungi in them have hardly been tested. Some facultative root hemiparasitic Pedicularis species form AM associations and hence are ideal for testing both direct and indirect effects of AM fungi on their nutrient acquisition. The aim of this study was to test the influence of AM inoculation on phosphorus (P) uptake by Pedicularis rex and P. tricolor. METHODS: (32)P labelling was used in compartmented pots to assess the contribution of the AM pathway and the influence of AM inoculation on P uptake from a host plant into the root hemiparasites. Laboratory isolates of fungal species (Glomus mosseae and G. intraradices) and the host species (Hordeum vulgare 'Fleet') to which the two Pedicularis species showed obvious responses in haustorium formation and growth in previous studies were used. KEY RESULTS: The AM colonization of both Pedicularis spp. was low (<15 % root length) and only a very small proportion of total plant P (<1 %) was delivered from the soil via the AM fungus. In a separate experiment, inoculation with AM fungi strongly interfered with P acquisition by both Pedicularis species from their host barley, almost certainly because the numbers of haustoria formed by the parasite were significantly reduced in AM plants. CONCLUSIONS: Roles of AM fungi in nutrient acquisition by root parasitic plants were quantitatively demonstrated for the first time. Evidence was obtained for a novel mechanism of preventing root parasitic plants from overexploiting host resources through AM fungal-induced suppression of the absorptive structures in the parasites.


Asunto(s)
Glomeromycota/fisiología , Hordeum/parasitología , Micorrizas/fisiología , Pedicularis/microbiología , Fósforo/metabolismo , Biomasa , Pedicularis/crecimiento & desarrollo , Pedicularis/metabolismo , Radioisótopos de Fósforo/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Simbiosis
15.
Nat Genet ; 36(6): 575-7, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15133510

RESUMEN

Mutations in PRKCSH, encoding the beta-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum (ER), cause autosomal dominant polycystic liver disease. We found that mutations in SEC63, encoding a component of the protein translocation machinery in the ER, also cause this disease. These findings are suggestive of a role for cotranslational protein-processing pathways in maintaining epithelial luminal structure and implicate noncilial ER proteins in human polycystic disease.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Cromosomas Humanos Par 6/genética , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Humanos , Chaperonas Moleculares , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN
16.
Front Plant Sci ; 14: 1186816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416877

RESUMEN

Introduction: Metabolic engineering of anthocyanin synthesis is an active research area for pigment breeding and remains a research hotspot involving AtPAP1 and ZmLc transcription factors. Caladium bicolor is a desirable anthocyanin metabolic engineering receptor, with its abundant leaf color and stable genetic transformation system. Methods: We transformed C. bicolor with AtPAP1 and ZmLc and successfully obtained transgenic plants. We then used a combination of metabolome, transcriptome, WGCNA and PPI co-expression analyses to identify differentially expressed anthocyanin components and transcripts between wild-type and transgenic lines. Results: Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and peonidin-3-O-rutinoside are the main components of anthocyanins in the leaves and petioles of C. bicolor. Exogenous introduction of AtPAP1 and ZmLc resulted in significant changes in pelargonidins, particularly pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside in C. bicolor. Furthermore, 5 MYB-TFs, 9 structural genes, and 5 transporters were found to be closely associated with anthocyanin synthesis and transport in C. bicolor. Discussion: In this study, a network regulatory model of AtPAP1 and ZmLc in the regulation of anthocyanin biosynthesis and transport in C. bicolor was proposed, which provides insights into the color formation mechanisms of C. bicolor, and lays a foundation for the precise regulation of anthocyanin metabolism and biosynthesis for economic plant pigment breeding.

17.
Ann Bot ; 109(6): 1075-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22362663

RESUMEN

BACKGROUND AND AIMS: Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant. METHODS: Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare 'Fleet' (barley) as the host plant. This study consisted of two greenhouse pot experiments. KEY RESULTS: Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite's host plant on haustoria production and caused significant growth depression of P. tricolor. CONCLUSIONS: AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.


Asunto(s)
Glomeromycota/metabolismo , Hordeum/parasitología , Micorrizas/metabolismo , Pedicularis/crecimiento & desarrollo , Pedicularis/microbiología , Raíces de Plantas/microbiología , Aumento de la Célula , Interacciones Huésped-Parásitos , Simbiosis
18.
Environ Sci Pollut Res Int ; 29(26): 39427-39440, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35102511

RESUMEN

Due to the increasingly serious environmental problems caused by the combustion of sulfides in fuel, deep desulfurization of fuel became particularly urgent. Herein, the catalyst (PMA@MOF-808) of the Zr-based metal-organic framework (MOF-808) encapsulating phosphomolybdic acid (PMA) was prepared via a one-pot hydrothermal method. Besides, the formate ions of PMA@MOF-808 were removed by posttreatment with methanol, resulting in formate-free PMA@MOF-808-H catalysts with unsaturated open metal sites. The as-synthesized catalysts were systematically characterized by XRD, FT-IR, SEM, BET, TGA, 1H NMR and XPS. The catalysts were also applied in catalytic oxidation desulfurization of fuel. The results indicated that the introduction of PMA and the removal of formate ions can improve the desulfurization performance of catalysts. Formate-free 0.2-PMA@MOF-808-H catalyst can reach 100% desulfurization rate for DBT. Besides, the kinetic properties were studied, and the apparent activation energy was 29.34 kJ/mol.


Asunto(s)
Formiatos , Estrés Oxidativo , Catálisis , Molibdeno , Ácidos Fosfóricos , Espectroscopía Infrarroja por Transformada de Fourier
19.
Microorganisms ; 10(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35208894

RESUMEN

In nature, most plants parasitized by root hemiparasites are also colonized by mutualistic arbuscular mycorrhizal (AM) fungi, highlighting the prevalence of this tripartite interaction. AM colonization is generally found to improve the growth of parasitized legumes but has little impact on grass hosts parasitized by root hemiparasites, and the underlying mechanisms are still unclear. In this study, we conducted a pot experiment to test the influence of AM fungus (Glomus mosseae) on the growth and photosynthesis of leguminous Trifolium repens and gramineous Elymus nutans in the presence of a root hemiparasitic plant (Pedicularis kansuensis). The results showed that inoculation with AM fungi significantly improved the growth performance of parasitized legumes via enhancing their nutrient status and photosynthetic capacity, even though a larger P. kansuensis parasitized the legume host in the AM treatment. In contrast, AM colonization slightly improved the shoot DW of grass hosts by suppressing haustoria formation and the growth of P. kansuensis. Our results demonstrated that legume hosts benefit more from AM inoculation than grass hosts in the presence of hemiparasitic plants, and set out the various mechanisms. This study provides new clues for parsing the tritrophic interaction of AM fungi, parasitic plants, and host plants.

20.
Front Plant Sci ; 13: 1047670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570959

RESUMEN

Invasive exotic plant species (IEPs) are widely distributed across the globe, but whether IEPs are drivers or passengers of habitat change in the invaded spaces remains unclear. Here, we carried out a vegetation and soil survey in 2018 and two independent field experiments (Pedicularis kansuensis removal in 2014 and 2015, and fertilization experiment since 2012) and found that the invasive annual P. kansuensis was at a disadvantage in light competition compared with perennial native grasses, but the successful invasion of P. kansuensis was due to the sufficient light resources provided by the reduced coverage of the native species. Conversely, nitrogen enrichment can effectively inhibit P. kansuensis invasion by increasing the photocompetitive advantage of the native species. sP. kansuensis invasion did not reduce species richness, but did increase plant community coverage, productivity and soil nutrients. Furthermore, the removal of P. kansuensis had little effect on the plant community structure and soil properties. Our results suggest that the passenger model perfectly explains the benign invasive mechanism of P. kansuensis. The invasion "ticket" of P. kansuensis is a spare ecological niche for light resources released by overgrazing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA