Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2213363120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652479

RESUMEN

With the emergence of antibiotic-resistant bacteria, innovative approaches are needed for the treatment of urinary tract infections. Boosting antimicrobial peptide expression may provide an alternative to antibiotics. Here, we developed reporter cell lines and performed a high-throughput screen of clinically used drugs to identify compounds that boost ribonuclease 4 and 7 expression (RNase 4 and 7), peptides that have antimicrobial activity against antibiotic-resistant uropathogens. This screen identified histone deacetylase (HDAC) inhibitors as effective RNase 4 and RNase 7 inducers. Validation studies in primary human kidney and bladder cells confirmed pan-HDAC inhibitors as well as the HDAC class I inhibitor, MS-275, induce RNase 4 and RNase 7 to protect human kidney and bladder cells from uropathogenic Escherichia coli. When we administered MS-275 to mice, RNase 4 and 7 expression increased and mice were protected from acute transurethral E. coli challenge. In support of this mechanism, MS-275 treatment increased acetylated histone H3 binding to the RNASE4 and RNASE7 promoters. Overexpression and knockdown of HDAC class I proteins identified HDAC3 as a primary regulator of RNase 4 and 7. These results demonstrate the protective effects of enhancing RNase 4 and RNase 7, opening the door to repurposing medications as antibiotic conserving therapeutics for urinary tract infection.


Asunto(s)
Inhibidores de Histona Desacetilasas , Infecciones Urinarias , Humanos , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Escherichia coli/metabolismo , Reposicionamiento de Medicamentos , Ribonucleasas/metabolismo , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Antibacterianos
2.
Am J Physiol Renal Physiol ; 326(6): F1078-F1090, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634130

RESUMEN

Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.


Asunto(s)
Proliferación Celular , Queratina-5 , Regeneración , Células Madre , Vejiga Urinaria , Urotelio , Animales , Ratones , Factores de Edad , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Ciclofosfamida , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Queratina-5/metabolismo , Queratina-5/genética , Ratones Endogámicos C57BL , Células Madre/metabolismo , Transcriptoma , Vejiga Urinaria/metabolismo , Urotelio/metabolismo
3.
J Cell Mol Med ; 24(14): 7959-7967, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32510753

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) is an important epigenetic regulator for normal neuronal maturation and brain glial cell function. Additionally, MeCP2 is also involved in a variety of cancers, such as breast, prostate, lung, liver and colorectal. However, whether MeCP2 contributes to the progression of breast cancer remains unknown. In the present study, we investigated the role of MeCP2 in cell proliferation, migration and invasion in vitro. We found that knockdown of MeCP2 inhibited expression of epithelial-mesenchymal transition (EMT)-related markers in breast cancer cell lines. In conclusion, our study suggests that MeCP2 inhibits proliferation and invasion through suppression of the EMT pathway in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteína 2 de Unión a Metil-CpG/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Proteína 2 de Unión a Metil-CpG/metabolismo
4.
Cancer Cell Int ; 20(1): 551, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33292225

RESUMEN

BACKGROUND: It has been known that ovarian cancer (OC) is a leading cause for women mortality globally. We aimed to analyze the underlying mechanism supporting that enhancer of zeste homolog 2 (EZH2) affected the development of OC via the involvement of microRNA-139 (miR-139)/transforming growth factor beta (TGF-ß)/lysophosphatidic acid-1 (LPA1) axis. METHODS: High expression patterns of EZH2 and miR-139 and low LPA1 expression pattern in OC were evaluated using RT-qPCR and immunoblotting, while their correlation was assessed by the Spearman's rank and Pearson's correlation coefficient. Subsequently, dual-luciferase reporter gene assay was applied to validate the binding relationship between miR-139 and LPA1, while H3K27me enrichment was assessed by ChIP assay. After that, the effects of altered expression of EZH2, miR-194, or LPA1 on the cell biological functions and the expression pattern of TGF-related factors were evaluated. RESULTS: We found that EZH2 repressed the miR-139 expression pattern by recruiting H3K27me3 to promote miR-139 promoter methylation, while silencing of EZH2 suppressed in vitro cancer progression by increasing miR-139. LPA1 was a target of miR-139, and could activate the TGF-ß signaling pathway, which hastened the OC progression. miR-139-targeted inhibition of LPA1 and LPA1-activated TGF-ß signaling pathway were evidenced to be critical mechanisms underlying the effects of EZH2 on OC cells. Lastly, silencing of EZH2 inhibited the xenograft growth in vivo. CONCLUSIONS: EZH2 could down-regulate miR-139 expression pattern by recruiting H3K27me3 to promote the miR-139 promoter methylation and activate the TGF-ß pathway by up-regulating LPA1, which contributed to the progression of OC. The current study may possess potentials for OC treatment.

5.
J Am Soc Nephrol ; 30(8): 1385-1397, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31239387

RESUMEN

BACKGROUND: Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS: To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS: Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS: These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.


Asunto(s)
Infecciones por Escherichia coli/enzimología , Riñón/enzimología , Ribonucleasas/genética , Vejiga Urinaria/enzimología , Infecciones Urinarias/enzimología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Adolescente , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Niño , Preescolar , Femenino , Silenciador del Gen , Humanos , Inmunidad Innata , Lactante , Riñón/microbiología , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Pronóstico , Vejiga Urinaria/microbiología , Urotelio/metabolismo , Urotelio/patología , Adulto Joven
6.
Am J Physiol Renal Physiol ; 317(3): F757-F766, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31322419

RESUMEN

Congenital urinary tract obstruction (UTO) is the leading cause of chronic kidney disease in children; however, current management strategies do not safeguard against progression to end-stage renal disease, highlighting the need for interventions to limit or reverse obstructive nephropathy. Experimental UTO triggers renal urothelial remodeling that culminates in the redistribution of basal keratin 5-positive (Krt5+) renal urothelial cells (RUCs) and the generation of uroplakin-positive (Upk)+ RUCs that synthesize a protective apical urothelial plaque. The cellular source of Upk+ RUCs is currently unknown, limiting the development of strategies to promote renal urothelial remodeling as a therapeutic approach. In the present study, we traced the origins of adult Upk+ RUCs during normal development and in response to UTO. Fate mapping analysis demonstrated that adult Upk+ RUCs derive from embryonic and neonatal Krt5+ RUCs, whereas Krt5+ RUCs lose this progenitor capacity and become lineage restricted by postnatal day 14. However, in response to UTO, postnatal day 14-labeled adult Krt5+ RUCs break their lineage restriction and robustly differentiate into Upk+ RUCs. Thus, Krt5+ RUCs drive renal urothelial formation during normal ontogeny and after UTO by differentiating into Upk+ RUCs in a temporally restricted manner.


Asunto(s)
Diferenciación Celular , Células Epiteliales/metabolismo , Queratina-15/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Regeneración , Células Madre/metabolismo , Obstrucción Ureteral/complicaciones , Urotelio/metabolismo , Animales , Linaje de la Célula , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Queratina-15/genética , Riñón/crecimiento & desarrollo , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Masculino , Ratones Noqueados , Organogénesis , Células Madre/patología , Uroplaquinas/metabolismo , Urotelio/crecimiento & desarrollo , Urotelio/patología
7.
Am J Physiol Renal Physiol ; 315(4): F1019-F1031, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897287

RESUMEN

Urinary tract obstruction represents a common cause of kidney injury across the human life span, resulting in chronic kidney disease and end-stage renal disease. Yet, the extent of obstructive renal damage can be heterogeneous between individuals, implying the existence of unknown mechanisms that protect against or accelerate kidney injury. In this study, we investigated the role of urothelial remodeling in renal adaptation during congenital and acquired obstruction. In the Megabladder ( Mgb-/-) model of congenital obstruction and unilateral ureteral ligation model of acute obstruction, progressive hydronephrosis is strongly associated with dynamic reorganization of the renal urothelium, which elaborates a continuous uroplakin (Upk) plaque. This led us to postulate that the Upk plaque prevents parenchymal injury during urinary tract obstruction. To test this hypothesis, we interbred Mgb-/- and Upk1b-/- mice, which lack the critical Upk1b subunit for Upk plaque formation. Upk1b-/-; Mgb-/- mice experienced an accelerated onset of bilateral hydronephrosis with severe (>67%) parenchymal loss, leading to renal failure and mortality in adolescence. To investigate the function of the renal Upk plaque during acute obstruction, we destabilized the Upk plaque by Upk1b deletion or genetically depleted Upk+ cells following unilateral ureteral obstruction. Both of these strategies accelerated renal parenchymal loss following ureteral ligation, attesting to a conserved, stabilizing role for Upk plaque deposition in the acutely obstructed kidney. In aggregate, these complementary experiments provide the first evidence that the Upk plaque confers an essential, protective adaptation to preserve renal parenchymal integrity during congenital and acquired urinary tract obstruction.


Asunto(s)
Riñón/patología , Obstrucción Ureteral/complicaciones , Uroplaquinas/metabolismo , Urotelio/patología , Animales , Modelos Animales de Enfermedad , Hidronefrosis/fisiopatología , Riñón/fisiopatología , Fallo Renal Crónico/complicaciones , Ratones Endogámicos C57BL , Ratones Transgénicos , Insuficiencia Renal/complicaciones , Insuficiencia Renal/patología , Urotelio/fisiopatología
8.
Kidney Int ; 93(6): 1320-1329, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29475562

RESUMEN

The signaling networks regulating antimicrobial activity during urinary tract infection (UTI) are incompletely understood. Interleukin-6 (IL-6) levels increase with UTI severity, but the specific contributions of IL-6 to host immunity against bacterial uropathogens are unknown. To clarify this we tested whether IL-6 activates the Stat3 transcription factor, to drive a program of antimicrobial peptide gene expression in infected urothelium during UTI. Transurethral inoculation of uropathogenic Escherichia coli led to IL-6 secretion, urothelial Stat3 phosphorylation, and activation of antimicrobial peptide transcription, in a Toll-like receptor 4-dependent manner in a murine model of cystitis. Recombinant IL-6 elicited Stat3 phosphorylation in primary urothelial cells in vitro, and systemic IL-6 administration promoted urothelial Stat3 phosphorylation and antimicrobial peptide expression in vivo. IL-6 deficiency led to decreased urothelial Stat3 phosphorylation and antimicrobial peptide mRNA expression following UTI, a finding mirrored by conditional Stat3 deletion. Deficiency in IL-6 or Stat3 was associated with increased formation of intracellular bacterial communities, and exogenous IL-6 reversed this phenotype in IL-6 knockout mice. Moreover, chronic IL-6 depletion led to increased renal bacterial burden and severe pyelonephritis in C3H/HeOuJ mice. Thus, IL-6/Stat3 signaling drives a transcriptional program of antimicrobial gene expression in infected urothelium, with key roles in limiting epithelial invasion and ascending infection.


Asunto(s)
Cistitis/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Vejiga Urinaria/metabolismo , Infecciones Urinarias/metabolismo , Urotelio/metabolismo , Animales , Línea Celular , Cistitis/genética , Cistitis/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Hepcidinas/genética , Hepcidinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Fosforilación , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Urotelio/microbiología
9.
Am J Physiol Renal Physiol ; 312(1): F43-F53, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760770

RESUMEN

Acquired renal scarring occurs in a subset of patients following febrile urinary tract infections and is associated with hypertension, proteinuria, and chronic kidney disease. Limited knowledge of histopathology, immune cell recruitment, and gene expression changes during pyelonephritis restricts the development of therapies to limit renal scarring. Here, we address this knowledge gap using immunocompetent mice with vesicoureteral reflux. Transurethral inoculation of uropathogenic Escherichia coli in C3H/HeOuJ mice leads to renal mucosal injury, tubulointerstitial nephritis, and cortical fibrosis. The extent of fibrosis correlates most significantly with inflammation at 7 and 28 days postinfection. The recruitment of neutrophils and inflammatory macrophages to infected kidneys is proportional to renal bacterial burden. Transcriptome analysis reveals molecular signatures associated with renal ischemia-reperfusion injury, immune cell chemotaxis, and leukocyte activation. This murine model recapitulates the cardinal histopathological features observed in humans with acquired renal scarring following pyelonephritis. The integration of histopathology, quantification of cellular immune influx, and unbiased transcriptional profiling begins to define potential mechanisms of tissue injury during pyelonephritis in the context of an intact immune response. The clear relationship between inflammatory cell recruitment and fibrosis supports the hypothesis that acquired renal scarring arises as a consequence of excessive host inflammation and suggests that immunomodulatory therapies should be investigated to reduce renal scarring in patients with pyelonephritis.


Asunto(s)
Cicatriz/metabolismo , Escherichia coli/aislamiento & purificación , Inflamación/microbiología , Riñón/microbiología , Pielonefritis/microbiología , Reflujo Vesicoureteral/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis/inmunología , Fibrosis/microbiología , Inflamación/inmunología , Inflamación/patología , Riñón/patología , Ratones , Ratones Endogámicos C3H , Nefritis Intersticial/inmunología , Nefritis Intersticial/microbiología , Nefritis Intersticial/patología , Pielonefritis/inmunología , Daño por Reperfusión/microbiología , Daño por Reperfusión/patología , Reflujo Vesicoureteral/microbiología
10.
Biochem Biophys Res Commun ; 494(1-2): 384-389, 2017 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-28965954

RESUMEN

miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease.


Asunto(s)
Regiones no Traducidas 3' , Antígenos CD36/genética , Colesterol/metabolismo , Células Espumosas/metabolismo , MicroARNs/genética , Isoformas de ARN/genética , Secuencia de Bases , Sitios de Unión , Transporte Biológico , Antígenos CD36/metabolismo , Línea Celular , Células Espumosas/citología , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Isoformas de ARN/metabolismo , Transducción de Señal
11.
J Bacteriol ; 198(6): 964-72, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26755631

RESUMEN

UNLABELLED: Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE: The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant ramifications for bacterial persistence and disease severity. While many studies have demonstrated that modifications of the LPS lipid A moiety modulate the extent of Toll-like receptor 4 (TLR4) activation, our studies implicate the O-antigen sugar moiety as another potential rheostat for the modulation of proinflammatory cytokine production.


Asunto(s)
Citocinas/metabolismo , Antígenos O/inmunología , Serogrupo , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Humanos , Ratones , Antígenos O/clasificación , Sistema Urinario/inmunología , Sistema Urinario/microbiología , Sistema Urinario/patología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/patogenicidad
12.
Kidney Int ; 90(3): 568-79, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27401534

RESUMEN

Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Infecciones por Escherichia coli/metabolismo , Insulina/metabolismo , Ribonucleasas/metabolismo , Infecciones Urinarias/metabolismo , Sistema Urinario/metabolismo , Adolescente , Antígenos CD/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/orina , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/etiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/orina , Femenino , Humanos , Insulina/uso terapéutico , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Ribonucleasas/orina , Transducción de Señal , Sistema Urinario/microbiología , Infecciones Urinarias/etiología , Infecciones Urinarias/microbiología , Infecciones Urinarias/orina
14.
Pediatr Res ; 80(4): 602-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27384406

RESUMEN

BACKGROUND: Congenital obstructive nephropathy (CON) is a leading cause of pediatric chronic kidney disease (CKD). Despite optimal surgical and medical care, there is a high rate of CKD progression. Better understanding of molecular and cellular changes is needed to facilitate development of improved biomarkers and novel therapeutic approaches in CON. METHODS: The megabladder (mgb) mouse is an animal model of CKD with impaired bladder emptying, hydronephrosis, and progressive renal injury. In this study, we characterize a particular microRNA, miR-205, whose expression changes with the degree of hydronephrosis in the mgb(-/-) kidney. RESULTS: Expression of miR-205 is progressively increased in the adult mgb(-/-) mouse with worsening severity of hydronephrosis. miR-205 expression is correlated with altered expression of cytokeratins and uroplakins, which are markers of cellular differentiation in urothelium. We describe the spatial pattern of miR-205 expression, including increased expression in renal urothelium and novel miR-205 expression in medullary collecting duct epithelium in the congenitally obstructed kidney. CONCLUSION: miR-205 is increased with severity of CON and CKD in the mgb(-/-) mouse and may regulate urothelial differentiation.


Asunto(s)
Epitelio/metabolismo , Regulación de la Expresión Génica , Enfermedades Renales/congénito , MicroARNs/genética , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hidronefrosis/sangre , Queratinas/sangre , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Fallo Renal Crónico/sangre , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Ratones Transgénicos , Uniones Estrechas , Uroplaquinas/sangre , Urotelio/metabolismo , Urotelio/patología
15.
Kidney Int ; 87(1): 151-61, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25075772

RESUMEN

Recent evidence suggests antimicrobial peptides protect the urinary tract from infection. Ribonuclease 7 (RNase 7), a member of the RNase A superfamily, is a potent epithelial-derived protein that maintains human urinary tract sterility. RNase 7 expression is restricted to primates, limiting evaluation of its antimicrobial activity in vivo. Here we identified ribonuclease 6 (RNase 6) as the RNase A superfamily member present in humans and mice that is most conserved at the amino acid level relative to RNase 7. Like RNase 7, recombinant human and murine RNase 6 has potent antimicrobial activity against uropathogens. Quantitative real-time PCR and immunoblot analysis indicate that RNase 6 mRNA and protein are upregulated in the human and murine urinary tract during infection. Immunostaining located RNase 6 to resident and infiltrating monocytes, macrophages, and neutrophils. Uropathogenic E. coli induces RNase 6 peptide expression in human CD14(+) monocytes and murine bone marrow-derived macrophages. Thus, RNase 6 is an inducible, myeloid-derived protein with markedly different expression from the epithelial-derived RNase 7 but with equally potent antimicrobial activity. Our studies suggest RNase 6 serves as an evolutionarily conserved antimicrobial peptide that participates in the maintenance of urinary tract sterility.


Asunto(s)
Endorribonucleasas/fisiología , Ribonucleasas/fisiología , Sistema Urinario/enzimología , Sistema Urinario/microbiología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana
16.
J Innate Immun ; 16(1): 283-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744252

RESUMEN

INTRODUCTION: The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI. METHODS: We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility. RESULTS: We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages. CONCLUSION: Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.


Asunto(s)
Infecciones por Escherichia coli , Macrófagos , Ratones Noqueados , Ribonucleasas , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Ratones , Escherichia coli Uropatógena/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Escherichia coli/inmunología , Ribonucleasas/metabolismo , Ribonucleasas/genética , Ratones Endogámicos C57BL , Humanos , Monocitos/inmunología , Modelos Animales de Enfermedad , Femenino , Células Cultivadas
17.
J Inflamm Res ; 16: 4471-4479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842190

RESUMEN

Peri-implantitis is an important cause of oral implant failure. In the past, TLR4 and TLR2 in the Toll-like family were generally considered as the key immune recognition receptors regulating peri-implantitis. However, under the guidance of this theory, there are still some unexplainable peri-implantitis symptoms. With the discovery of novel intracellular LPS receptor Caspase-11, a new understanding of inflammatory signaling and immune regulation in the development of peri-implantitis has been gained. However, the regulatory role of Caspase-11 in peri-implantitis and its crosstalk with the TLR4 pathway remain unclear. The therapeutic effect of drugs targeting Caspase-11 on peri-implantitis is still in its early stages. In view of this situation, this paper reviews the possible role of Caspase-11 in peri-implant inflammation, elaborated the entry process of LPS and the activation mechanism of Caspase-11, and analyzes the differences in Caspase-11 between commonly studied animals, mice and humans. The current research hotspots and challenges are also analyzed to provide new insights and ideas for researchers.

18.
J Innate Immun ; 15(1): 865-875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980892

RESUMEN

Mounting evidence suggests that antimicrobial peptides and proteins (AMPs) belonging to the RNase A superfamily have a critical role in defending the bladder and kidney from bacterial infection. RNase 6 has been identified as a potent, leukocyte-derived AMP, but its impact on urinary tract infection (UTI) in vivo has not been demonstrated. To test the functional role of human RNase 6, we generated RNASE6 transgenic mice and studied their susceptibility to experimental UTI. In addition, we generated bone marrow-derived macrophages to study the impact of RNase 6 on antimicrobial activity within a cellular context. When subjected to experimental UTI, RNASE6 transgenic mice developed reduced uropathogenic Escherichia coli (UPEC) burden, mucosal injury, and inflammation compared to non-transgenic controls. Monocytes and macrophages were the predominant cellular sources of RNase 6 during UTI, and RNASE6 transgenic macrophages were more proficient at intracellular UPEC killing than non-transgenic controls. Altogether, our findings indicate a protective role for human RNase 6 during experimental UTI.


Asunto(s)
Ribonucleasas , Infecciones Urinarias , Animales , Humanos , Ratones , Endorribonucleasas/genética , Riñón , Ratones Transgénicos , Ribonucleasas/genética , Vejiga Urinaria/microbiología
19.
J Urol ; 188(1): 236-41, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22595065

RESUMEN

PURPOSE: We hypothesized that virulence levels of Escherichia coli isolates causing pediatric urinary tract infections differ according to severity of infection and also among various uropathies known to contribute to pediatric urinary tract infections. We evaluated these relationships using in vitro cytokine interleukin-6 elicitation. MATERIALS AND METHODS: E. coli isolates were cultured from children presenting with urinary tract infections. In vitro cytokine (interleukin-6) elicitation was quantified for each isolate and the bacteria were grouped according to type of infection and underlying uropathy (neurogenic bladder, nonneurogenic bowel and bladder dysfunction, primary vesicoureteral reflux, no underlying etiology). RESULTS: A total of 40 E. coli isolates were collected from children with a mean age of 61.5 months (range 1 to 204). Mean level of in vitro cytokine elicitation from febrile urinary tract infection producing E. coli was significantly lower than for nonfebrile strains (p = 0.01). The interleukin-6 response to E. coli in the neurogenic bladder group was also significantly higher than in the vesicoureteral reflux (p = 0.01) and no underlying etiology groups (p = 0.02). CONCLUSIONS: In vitro interleukin-6 elicitation, an established marker to determine bacterial virulence, correlates inversely with clinical urinary tract infection severity. Less virulent, high cytokine producing E. coli were more likely to cause cystitis and were more commonly found in patients with neurogenic bladder and nonneurogenic bowel and bladder dysfunction, whereas higher virulence isolates were more likely to produce febrile urinary tract infections and to affect children with primary vesicoureteral reflux and no underlying etiology. These findings suggest that bacteria of different virulence levels may be responsible for differences in severity of pediatric urinary tract infections and may vary among different underlying uropathies.


Asunto(s)
Infecciones por Escherichia coli/complicaciones , Escherichia coli/patogenicidad , Interleucina-6/sangre , Medición de Riesgo , Infecciones Urinarias/complicaciones , Reflujo Vesicoureteral/etiología , Niño , Preescolar , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Prevalencia , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología , Reflujo Vesicoureteral/sangre , Reflujo Vesicoureteral/epidemiología , Virulencia
20.
Chemphyschem ; 13(17): 3812-8, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23065840

RESUMEN

The photocontrolled phase transitions and reflection behaviors of a smectic liquid crystal, 4-octyl-4'-cyanobiphenyl (8CB), tuned by a chiral azobenzene, are systematically investigated. For the smectic 8CB doped with the chiral azobenzene (1R)-(-)-4-n-hexyl-4'-menthylazobenzene (ABE), the initial smectic phase can be switched to cholesteric and then to isotropic upon UV irradiation due to the trans-to-cis photoisomerization of ABE; however, no reflection band is observed. For the smectic 8CB doped with ABE and the chiral agent (S)-(-)-1,1'-binaphthyl-2,2'-diol (BN), a reflection band located in the short-wavelength infrared region is observed, which disappears after further UV irradiation. For the smectic 8CB doped with ABE and a chiral agent with higher helical twisting power, (S)-2,2'-methylendioxy-1,1'-binaphthalene (DBN), a phototunable system with cholesteric pitch short enough to reflect visible light is demonstrated. With a given concentration of the chiral dopant DBN, a reversible reflection color transition is realized tuned by the isomerization of azobenzene. The reverse phase transition from isotropic to cholesteric and then to smectic can be recovered upon visible irradiation. The photocontrolled phase transitions in smectic liquid crystals and the corresponding changes in reflection band switched by photoisomerization of azobenzene may provide impetus for their practical application in optical memories, displays, and switches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA