Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
2.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642822

RESUMEN

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Asunto(s)
Inflamación/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Masculino , Ratones , Persona de Mediana Edad , Sepsis/sangre , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo
3.
Plant Cell ; 35(7): 2449-2463, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943796

RESUMEN

Cryptophyte plastids originated from a red algal ancestor through secondary endosymbiosis. Cryptophyte photosystem I (PSI) associates with transmembrane alloxanthin-chlorophyll a/c proteins (ACPIs) as light-harvesting complexes (LHCs). Here, we report the structure of the photosynthetic PSI-ACPI supercomplex from the cryptophyte Chroomonas placoidea at 2.7-Å resolution obtained by crygenic electron microscopy. Cryptophyte PSI-ACPI represents a unique PSI-LHCI intermediate in the evolution from red algal to diatom PSI-LHCI. The PSI-ACPI supercomplex is composed of a monomeric PSI core containing 14 subunits, 12 of which originated in red algae, 1 diatom PsaR homolog, and an additional peptide. The PSI core is surrounded by 14 ACPI subunits that form 2 antenna layers: an inner layer with 11 ACPIs surrounding the PSI core and an outer layer containing 3 ACPIs. A pigment-binding subunit that is not present in any other previously characterized PSI-LHCI complexes, ACPI-S, mediates the association and energy transfer between the outer and inner ACPIs. The extensive pigment network of PSI-ACPI ensures efficient light harvesting, energy transfer, and dissipation. Overall, the PSI-LHCI structure identified in this study provides a framework for delineating the mechanisms of energy transfer in cryptophyte PSI-LHCI and for understanding the evolution of photosynthesis in the red lineage, which occurred via secondary endosymbiosis.


Asunto(s)
Diatomeas , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila A/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Fotosíntesis , Transferencia de Energía , Diatomeas/metabolismo
4.
Nano Lett ; 24(18): 5481-5489, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639407

RESUMEN

Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.


Asunto(s)
Hidrogeles , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Animales , Ratones , Hidrogeles/química , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Durapatita/química , Línea Celular Tumoral , Quitosano/química , Subfamilia K de Receptores Similares a Lectina de Células NK , Interleucinas/inmunología , Interleucina-2/inmunología
5.
J Biol Chem ; 299(8): 104958, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380083

RESUMEN

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Asunto(s)
Prochlorococcus , Agua de Mar , Transportadoras de Casetes de Unión a ATP/metabolismo , Prochlorococcus/metabolismo , Urea/metabolismo , Agua de Mar/microbiología
6.
J Hepatol ; 80(5): 792-804, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38331327

RESUMEN

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/metabolismo , Células Asesinas Naturales/patología , Inmunoterapia , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ligandos , Pronóstico
7.
Small ; 20(23): e2307309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150611

RESUMEN

Ferroptosis is associated with the occurrence and development of many diseases, which is the result of an imbalance in cellular metabolism and oxidation-reduction balance. Therefore, it is an effective therapeutic strategy that simultaneously regulating the intracellular oxidation-reduction system. Herein, a click reaction of alkynylamide with thiol groups in the presence of amine or in PBS (pH = 7.4) is developed, which can react efficiently with thiol substances, such as cysteine (Cys), glutathione (GSH), and bovine serum albumin (BSA). Notably, MBTB-PA, an aggregation-induced emission (AIE) photosensitizer with an alkynylamide unit, is synthesized and its intracellular behavior is visualized in situ by fluorescence imaging, demonstrating its excellent ability to target the endoplasmic reticulum. Furthermore, MBTB-PA reacted with proteins in tumor cells, consumed reducing substances, and triggered intracellular oxidative stress, resulting in cell death. Based on this reaction therapy strategy, click reaction is combined with photodynamic therapy to achieve effective killing of tumor cells by simultaneously raising the intracellular oxidative state and reducing the reductive state. This work not only develops an application of click reaction of alkynamide with thiol in bioconjugation and anti-tumor therapy, but also provides feasible ideas for organic reactions in the exploration of organisms.


Asunto(s)
Química Clic , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Humanos , Línea Celular Tumoral , Animales , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
8.
Clin Exp Immunol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036980

RESUMEN

T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen presenting cells. However, increasing evidences have shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-GalCer challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.

9.
Hepatology ; 78(2): 468-485, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815363

RESUMEN

BACKGROUND AND AIMS: Natural killer (NK) cells are key players in tumor immunosurveillance, and metabolic adaptation manipulates their fate and functional state. The nicotinamide adenine dinucleotide (NAD + ) has emerged as a vital factor to link cellular metabolism and signaling transduction. Here, we identified NAD + metabolism as a central hub to determine the homeostasis and function of NK cells. APPROACH AND RESULTS: NAD + level was elevated in activated NK cells. NAD + supplementation not only enhanced cytokine production and cytotoxicity but also improved the proliferation and viability of NK cells. Intriguingly, the salvage pathway was involved in maintaining NAD + homeostasis in activated NK cells. Genetic ablation or pharmacological blockade of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD + salvage pathway, markedly destroyed the viability and function of NK cells. Mechanistically, NAD + salvage dictated the mitochondrial homeostasis and oxidative phosphorylation activity to support the optimal function of NK cells. However, in human HCC tissues, NAMPT expression and NAD + level were significantly down-regulated in tumor-infiltrating NK cells, which negatively correlated with patient survival. And lactate accumulation in the tumor microenvironment was at least partially responsible for the transcriptional repression of NAMPT in NK cells. Further, deficiency of Nampt in NK cells accelerated the growth of HCC and melanoma. Supplementation of the NAD + precursor nicotinamide mononucleotide (NMN) significantly improved NK antitumor response in both mouse and human cell-derived xenografts. CONCLUSIONS: These findings reveal NAD + salvage as an essential factor for NK-cell homeostasis and function, suggesting a potential strategy for invigorating NK cell-based immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Citocinas/metabolismo , Células Asesinas Naturales/metabolismo , Microambiente Tumoral
10.
Plant Cell Environ ; 47(8): 3266-3281, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38742574

RESUMEN

Soil phosphorus (P) availability affects plant growth and distribution. However, it is still unknown how sex-specific variation in functional traits affects plants' P acquisition and soil P transformation. On wet sites, female poplars had a greater specific root length (SRL), and a higher diversity of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB). Male poplars living on wet sites increased the abundance of AMF and PSB communities and enhanced moderately labile and highly resistant organic P mineralisation via increased phosphatase activity. In contrast, on the dry site, the abundance and diversity of AMF and PSB communities increased in females, enhancing moderately labile and highly resistant organic P mineralisation via elevating phosphatase activities. Males maintained greater SRL and promoted Ca-P mobilisation via the release of root carboxylic acids and rhizosphere acidification on the dry site. The AMF community diversity followed a similar pattern as that of the PSB community when altering the P availability of different-sex plants. Our results indicated that organic P and Ca-P are the major sources of plant-available P in natural P. euphratica forests. Seasonal shifts and geographic locations affected the share of organic and inorganic P pools, and AMF and PSB diversities, ultimately altering sex-specific P acquisition strategies of plants.


Asunto(s)
Bosques , Micorrizas , Fósforo , Populus , Agua , Populus/metabolismo , Populus/fisiología , Fósforo/metabolismo , Micorrizas/fisiología , Agua/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo , Rizosfera
11.
Glob Chang Biol ; 30(2): e17198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379533

RESUMEN

Males and females of dioecious plants have sex-specific adaptations to diverse habitats. The effects of inter- and intrasexual interactions in poplar plantations on composition, structure, and function of soil microbiota have not been explored in degraded areas. We conducted a series of greenhouse and field experiments to investigate how belowground competition, soil microbial communities, and seasonal variation nitrogen content differ among female, male, and mixed-sex Populus cathayana plantations. In the greenhouse experiment, female neighbors suppressed the growth of males under optimal nitrogen conditions. However, male neighbors enhanced stable isotope ratio of nitrogen (δ15 N) of females under intersexual competition. In the field, the root length density, root area density, and biomass of fine roots were lower in female plantations than in male or mixed-sex plantations. Bacterial networks of female, male, and mixed-sex plantations were characterized by different composition of hub nodes, including connectors, modules, and network hubs. The sex composition of plantations altered bacterial and fungal community structures according to Bray-Curtis distances, with 44% and 65% of variance explained by the root biomass, respectively. The total soil nitrogen content of mixed-sex plantation was higher than that in female plantation in spring and summer. The mixed-sex plantation also had a higher ß-1,4-N-acetyl-glucosaminidase activity in summer and a higher nitrification rate in autumn than the other two plantations. The seasonal soil N content, nitrification rate, and root distribution traits demonstrated spatiotemporal niche separation in the mixed-sex plantation. We argue that a strong female-female competition and limited nitrogen content could strongly impede plant growth and reduce the resistance of monosex plantations to climate change and the mixed-sex plantations constitutes a promising way to restore degraded land.


Asunto(s)
Microbiota , Populus , Suelo/química , Biomasa , Nitrógeno/metabolismo , Bacterias , Microbiología del Suelo
12.
Inorg Chem ; 63(26): 12333-12341, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38898577

RESUMEN

Metal-anchored covalent organic frameworks (COFs), as a class of significant derivatives of COFs, are widely used as heterogeneous catalysts in diverse chemical reactions. However, they are typically synthesized via post-treatment strategies, which often lead to the decline of COF crystallinity, decrease of porous properties, instability in catalytic performances, generation of additional chemical waste, and consumption of excess time and energy. In this work, we demonstrate an approach to construct a metal-functionalized COF via a one-pot method induced by γ-ray radiation. Specifically, copper-coordinated COF was in situ synthesized by irradiating a mixture of monomers and copper salt under ambient conditions. Interestingly, the initial Cu2+ ions were reduced to Cu+ ions by the radiation-generated reducing species, affording a unique mixed-valent copper(I/II)-coordinated COF. Additionally, the copper-coordinated COF displayed enhanced crystallinity and porous properties compared to those of the parent COF, displaying an opposite trend to the postsynthetic method. Notably, the introduced copper on the COF skeleton endowed the parent COF with catalytic ability. The resulting copper-coordinated COF exhibited remarkable catalytic performances in the reduction of 4-nitrophenol to 4-aminophenol and maintained almost unchanged catalytic performance after five catalytic cycles.

13.
J Nerv Ment Dis ; 212(8): 437-444, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39008889

RESUMEN

ABSTRACT: COVID-19 survivors complained of the experience of cognitive impairments, which also called "brain fog" even recovered. The study aimed to describe long-term cognitive change and determine psychosocial factors in COVID-19 survivors. A cross-sectional study was recruited 285 participants from February 2020 to April 2020 in 17 hospitals in Sichuan Province. Cognitive function, variables indicative of the virus infection itself, and psychosocial variables were collected by telephone interview. Univariate logistic regression and Lasso logistic regression models were used for variable selection which plugged into a multiple logistics model. Overall prevalence of moderate or severe cognitive impairment was 6.3%. Logistic regression showed that sex, religion, smoking status, occupation, self-perceived severity of illness, sleep quality, perceived mental distress after COVID-19, perceived discrimination from relatives and friends, and suffered abuse were associated with cognitive impairment. The long-term consequences of cognitive function are related to multiple domains, in which psychosocial factors should be taken into consideration.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Sobrevivientes , Humanos , Masculino , Femenino , COVID-19/psicología , COVID-19/epidemiología , Estudios Transversales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/epidemiología , Persona de Mediana Edad , Sobrevivientes/psicología , China/epidemiología , Adulto , Anciano , Prevalencia
14.
Angew Chem Int Ed Engl ; 63(30): e202406845, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38687326

RESUMEN

Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.

15.
Angew Chem Int Ed Engl ; 63(27): e202405213, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637914

RESUMEN

Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.

16.
Semin Cancer Biol ; 86(Pt 2): 463-475, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35660001

RESUMEN

Urologic cancers accounted for more than two million new cases and around 0.8 million deaths in 2020. Although surgery, chemotherapy, and radiotherapy, as well as castration for prostate cancer, remain the cornerstones for managing urologic neoplasms, they can result in severe adverse effects, poor patient compliance, and unsatisfactory survival rates, thus, it is essential to develop novel options that enable the early detection of these malignancies, together with providing accurate diagnoses, and more efficient treatment strategies. Nanomedicine represents an emerging approach that can deliver formulations or drugs across traditional biological barriers in the body and be directed to specific cell types within target organs via active targeting or passive targeting, thus, showing potential to improve the management of urologic cancers. In this review, we discussed the most recent updates on the application of nanomedicines in the diagnosis and treatment of urologic cancers, with focus on prostate, bladder and kidney tumors. We also presented the anti-tumor molecular mechanisms of newly designed nanomedicine for treating urologic cancers, mainly including image-guided surgery, chemotherapy, radiotherapy, gene therapy, immunotherapy, and their synergetic therapy. Current studies have demonstrated the potential advantages of nanomedicine over conventional approaches. However, most developments and new findings in this area have not been validated in clinical trials yet, and therefore, efforts shall be made to translate these research insights into clinical practices for urologic cancers.


Asunto(s)
Neoplasias de la Próstata , Neoplasias Urológicas , Masculino , Humanos , Nanomedicina , Neoplasias Urológicas/terapia , Neoplasias Urológicas/tratamiento farmacológico , Inmunoterapia , Factores Inmunológicos
17.
J Am Chem Soc ; 145(43): 23651-23658, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37859406

RESUMEN

Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.

18.
Apoptosis ; 28(3-4): 313-325, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36652128

RESUMEN

Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.


Asunto(s)
Apoptosis , Daño por Reperfusión , Humanos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Dominio de Reclutamiento y Activación de Caspasas , Daño por Reperfusión/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Reperfusión
19.
Environ Microbiol ; 25(7): 1238-1249, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808192

RESUMEN

Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.


Asunto(s)
Liasas de Carbono-Azufre , Compuestos de Sulfonio , Secuencia de Aminoácidos , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Océanos y Mares , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo
20.
New Phytol ; 240(4): 1519-1533, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37615210

RESUMEN

Little is known about how sex differences in root zone characteristics, such as contents of allelochemicals and soil microbial composition, mediate intra- and intersexual interactions in dioecious plants. We examined the processes and mechanisms of sex-specific belowground interactions mediated by allelochemicals and soil microorganisms in Populus cathayana females and males in replicated 30-yr-old experimental stands in situ and in a series of controlled experiments. Female roots released a greater amount and more diverse phenolic allelochemicals into the soil environment, resulting in growth inhibition of the same sex neighbors and deterioration of the community of soil microorganisms. When grown with males, the growth of females was consistently enhanced, especially the root growth. Compared with female monocultures, the presence of males reduced the total phenolic accumulation in the soil, resulting in a shift from allelopathic inhibition to chemical facilitation. This association was enhanced by a favorable soil bacterial community and increased bacterial diversity, and it induced changes in the orientation of female roots. Our study highlighted a novel mechanism that enhances female performance by males through alterations in the allelochemical content and soil microbial composition. The possibility to improve productivity by chemical mediation provides novel opportunities for managing plantations of dioecious plants.


Asunto(s)
Populus , Animales , Populus/fisiología , Suelo/química , Feromonas , Plantas , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA