Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemistry ; 30(9): e202303298, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050716

RESUMEN

Theranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, 177 Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation (177 Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The in vitro anticancer investigations demonstrate that 177 Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound. Single photon emission computed tomography/ computed tomography (SPECT/CT) imaging and in vivo biodistribution based on 177 Lu-DOTA-PEG-CPNs reveal that notable radioactivity accumulation at tumor site in murine 4T1 models with both intravenous and intratumoral administration of the prepared radiotracer. Significant tumor inhibition has been observed in mice treated with 177 Lu-DOTA-PEG-CPNs, of which the median survival was highly extended. More strikingly, 50 % of mice intratumorally injected with 177 Lu-DOTA-PEG-CPNs was cured and showed no tumor recurrence within 90 days. The outcome of this work can provide new hints for traditional nanomedicines and promote clinical translation of 177 Lu radiolabeled compounds efficiently.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Medicina de Precisión , Polímeros , Distribución Tisular , Línea Celular Tumoral , Radioisótopos/uso terapéutico , Lutecio/uso terapéutico , Radiofármacos/uso terapéutico , Neoplasias/tratamiento farmacológico
2.
Langmuir ; 40(22): 11723-11731, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775311

RESUMEN

224Ra (T1/2 = 3.63 d), an α-emitting radionuclide, holds significant promise in cancer endoradiotherapy. Current 224Ra-related therapy is still scarce because of the lack of reliable radionuclide supply. The 228Th-224Ra radionuclide generator can undoubtedly introduce continuous and sustainable availability of 224Ra for advanced nuclear medicine. However, conventional metal oxides for such radionuclide generators manifest suboptimal adsorption capacities for the parent nuclide, primarily attributable to their limited surface area. In this work, core-shell SiO2@TiO2 microspheres were proposed to develop as column materials for the construction of a 228Th-224Ra generator. SiO2@TiO2 microspheres were well prepared and systematically characterized, which has also been demonstrated to have good adsorption capacity to 228Th and very weak binding affinity toward 224Ra via simulated chemical separation. Upon introducing 228Th-containing solution onto the SiO2@TiO2 functional column, a 228Th-224Ra generator with excellent retention of the parent radionuclide and ideal elution efficiency of daughter radionuclide was obtained. The prepared 228Th-224Ra generator can produce 224Ra with high purity and medical usability in good elution efficiency (98.72%) even over five cycles. To the best of our knowledge, this is the first time that the core-shell mesoporous materials have been applied in a radionuclide generator, which can offer valuable insights for materials chemistry, radiochemical separation, and biological medicine.

3.
J Am Chem Soc ; 145(27): 14679-14685, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37366004

RESUMEN

225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Distribución Tisular , Radioisótopos , Radiofármacos , Neoplasias/tratamiento farmacológico
4.
Bioorg Med Chem ; 96: 117517, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939492

RESUMEN

Recently, endoradiotherapy based on actinium-225 (225Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, 111In/225Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using 111In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis. Significant inhibition of tumor growth has been observed in murine 4T1 models treated with 225Ac-DOTA-PEG-CPNs when compared to mice treated with PBS or DOTA-PEG-CPNs. The 225Ac-DOTA-PEG-CPNs group experienced no single death within 24 days with the median survival considerably extended to 35 days, while all the mice treated with PBS or DOTA-PEG-CPNs died at 20 days post injection. Additionally, the histopathology studies demonstrated no obvious side effects on healthy tissues after treatment with 225Ac-DOTA-PEG-CPNs. All these results reveal that the new 225Ac-labeled DOTA-PEG-CPNs is promising as paradigm for endoradiotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Polímeros , Distribución Tisular , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Línea Celular Tumoral
5.
J Environ Sci (China) ; 124: 915-922, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182194

RESUMEN

As a biosorbent, algae are frequently used for the biotreatment or bioremediation of water contaminated by heavy metal or radionuclides. However, it is unclear that whether or not the biomineralization of these metal or radionuclides can be induced by algae in the process of bioremediation and what the mechanism is. In this work, Ankistrodsemus sp. has been used to treat the uranium-contaminated water, and more than 98% of uranium in the solution can be removed by the alga, when the initial uranium concentration ranges from 10 to 80 mg/L. Especially, an unusual phenomenon of algae-induced uranium biomineralization has been found in the process of uranium bioremediation and its mineralization mechanism has been explored by multiple approaches. It is worth noticing that the biomineralization of uranium induced by Ankistrodsemus sp. is significantly affected by contact time and pH. Uranium is captured rapidly on the cell surface via complexation with the carboxylate radical, amino and amide groups of the microalgae cells, which provides nucleation sites for the precipitation of insoluble minerals. Uranium stimulates Ankistrodsemus sp. to metabolize potassium ions (K+), which may endow algae with the ability to biomineralize uranium into the rose-like compreignacite (K2[(UO2)6O4(OH)6]•8H2O). As the time increased, the amorphous gradually converted into compreignacite crystals and a large number of crystals would expand over both inside and outside the cells. To the best of our knowledge, this is the first investigated microalgae with a time-dependent uranium biomineralization ability and superior tolerance to uranium. This work validates that Ankistrodsemus sp. is a promising alga for the treatment of uranium-contaminated wastewater.


Asunto(s)
Chlorophyta , Uranio , Amidas , Biomineralización , Minerales/química , Potasio , Radioisótopos , Uranio/química , Compuestos de Uranio , Aguas Residuales , Agua
6.
Chemistry ; 28(19): e202104589, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35174917

RESUMEN

In past decades, nanoscale metal-organic frameworks (NMOFs) have drawn more and more attention in multimodal imaging and targeting therapy of various malignant cancers. Here, we proposed to dope 111 In into fluorescent In-based NMOFs (In-MIL-68-NH2 ), with an attempt to prepare a new nanomedicine with great anticancer potential. As a proof of concept, the obtained NMOF (In-MIL-68/PEG-FA) with targeting motifs is able to act as a fluorescent probe to achieve Hela cell imaging. Moreover, the Auger electron emitter 111 In built in corresponding radioactive NMOF (111 In-MIL-68/PEG-FA) can bring clear damage to cancer cells, leading to a high cell killing rate of 59.3 % within 48 h. In addition, the cell cycle presented a significant dose-dependent G2/M inhibiting mode, which indicates that 111 In-MIL-68/PEG-FA has the ability to facilitate the cancer cells to enter apoptotic program. This work demonstrated the potential of 111 In-labelled NMOFs in specific killings of cancer cells, providing a new approach to develop nanomedicines with theranostic function.


Asunto(s)
Antineoplásicos , Estructuras Metalorgánicas , Humanos , Antineoplásicos/farmacología , Células HeLa , Nanomedicina
7.
Mol Pharm ; 19(9): 3206-3216, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35993583

RESUMEN

Targeted radionuclide therapy based on α-emitters plays an increasingly important role in cancer treatment. In this study, we proposed to apply a heterodimeric peptide (iRGD-C6-lys-C6-DA7R) targeting both VEGFR and integrins as a new vector for 211At radiolabeling to obtain high-performance radiopharmaceuticals with potential in targeted alpha therapy (TAT). An astatinated peptide, iRGD-C6-lys(211At-ATE)-C6-DA7R, was prepared with a radiochemical yield of ∼45% and high radiochemical purity of >95% via an electrophilic radioastatodestannylation reaction. iRGD-C6-lys(211At-ATE)-C6-DA7R showed good stability in vitro and high binding ability to U87MG (glioma) cells. Systematic in vitro antitumor investigations involving cytotoxicity, apoptosis, distribution of the cell cycle, and reactive oxygen species (ROS) clearly demonstrated that 211At-labeled heterodimeric peptides could significantly inhibit cell viability, induce cell apoptosis, arrest the cell cycle in G2/M phase, and increase intracellular ROS levels in a dose-dependent manner. Biodistribution revealed that iRGD-C6-lys(211At-ATE)-C6-DA7R had rapid tumor accumulation and fast normal tissue/organ clearance, which was mainly excreted through the kidneys. Moreover, in vivo therapeutic evaluation indicated that iRGD-C6-lys(211At-ATE)-C6-DA7R was able to obviously inhibit tumor growth and prolong the survival of mice bearing glioma xenografts without notable toxicity to normal organs. All these results suggest that TAT mediated by iRGD-C6-lys(211At-ATE)-C6-DA7R can provide an effective and promising strategy for the treatment of glioma and some other tumors.


Asunto(s)
Glioma , Integrinas , Animales , Línea Celular Tumoral , Glioma/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Péptidos/metabolismo , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Especies Reactivas de Oxígeno/uso terapéutico , Distribución Tisular
8.
Bioorg Med Chem ; 59: 116677, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220162

RESUMEN

Vascular endothelial growth factor receptor (VEGFR) and integrin αv are over-expressed in angiogenesis of variety malignant tumors with key roles in angiogenesis, and have been proven as valuable targets for cancer imaging and treatment. In this study, a heterodimeric peptide targeting VEGFR and integrin was designed, and radiolabeled with zirconium-89 (89Zr) for PET imaging of glioma. 89Zr-DFO-heterodimeric peptide, a the newly developed probe, was prepared with radiochemical yield of 88.7 ± 2.4%. Targeted binding capability of 89Zr-DFO-heterodimeric peptide towards U87MG cells was investigated in murine glioma xenograft models, which shows that the designed probe has good binding ability to both targeting sites. Biodistribution indicated that kidney metabolism is the main pathway and tumor uptake of 89Zr-DFO-heterodimeric peptide reached the peak of 0.62 ± 0.10% ID/g . U87MG xenograft could be clearly visualized by microPET/CT imaging through 1 to 3 h post-injection of 89Zr-DFO-heterodimeric peptide. Importantly, the tumor radiouptake was significantly reduced after blocking, and the imaging effect of this radioactive compound was more obvious than that of monomeric peptide probes. 89Zr-DFO-heterodimeric peptide has been demonstrated to show potential as a new radiopharmaceutical probe towards glioma, and multi-target probes do have advantages in tumor imaging.


Asunto(s)
Glioma , Integrinas , Animales , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Xenoinjertos , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Receptores de Factores de Crecimiento Endotelial Vascular , Distribución Tisular , Factor A de Crecimiento Endotelial Vascular
9.
Bioorg Med Chem ; 55: 116600, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999526

RESUMEN

Glioma is the most common primary intracranial tumor without effective treatment. Positron emission tomography tracers labeled with 68Ga targeting fibroblast activation protein (FAP) have shown favorable characteristics in the diagnosis of glioma. However, to the best of our knowledge, FAP-targeted endoradiotherapy has never been explored in glioma. Hence, in this study, we investigated the therapeutic effect of 211At-labeled fibroblast activation protein inhibitor (FAPI) for glioma in vitro and in vivo. By astatodestannylation reaction, we prepared 211At-FAPI-04 with a radiochemical yield of 45 ± 6.7% and radiochemical purity of 98%. With good stability in vitro, 211At-FAPI-04 showed fast and specific binding to FAP-positive U87MG cells, and could significantly reduce the cell viability, arrested cell cycle at G2/M phase and suppressed cell proliferative efficacy. Biodistribution studies revealed that 6-fold higher accumulation in tumor sites was achieved by intratumoral injection in comparison with intravenous injection. In U87MG xenografts, 211At-FAPI-04 obviously suppressed the tumor growth and prolonged the median survival in a dose-dependent manner without obvious toxicity to normal organs. In addition, reduced proliferation and increased apoptosis were also observed after 211At-FAPI-04 treatment. All these results suggest that targeted alpha-particle therapy (TAT) mediated by 211At-FAPI-04 can provide an effective and promising strategy for the treatment of glioma.

10.
Chemistry ; 27(34): 8730-8736, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33872429

RESUMEN

We present here the synthesis of a novel fluorescent actinide polyrotaxane compound URCP1 through the utilization of an end-cutting pseudorotaxane precursor with only the cucurbit[6]uril (CB[6]) macrocyclic components acting as linking struts. The non-coordinating guest motif in the obtained polyrotaxane, with increased freedom and structural flexibility, can display intriguing temperature-triggered conformational variations inside the cavity of CB[6], which was clearly evidenced by crystallographic snapshots at different temperatures. Notably, this observation of temperature-triggered structural dynamics in URCP1 represents the first report of actinide polyrotaxane with such feature in solid-state. Moreover, URCP1 has a high photoluminescence quantum yield (PLQY) of 49.8 %, comparable to other luminescent uranyl compounds, and can work as a fluorescent probe to selectively detect Fe3+ over other eight competing cations in aqueous solution, with the limit of detection being as low as 4.4×10-3  ppm.

11.
Mol Pharm ; 18(11): 4179-4187, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34591481

RESUMEN

As an excellent target for cancer theranostics, fibroblast activation protein (FAP) has become an attractive focus in cancer research. A class of FAP inhibitors (FAPIs) with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold were developed, which displayed nanomolar affinity and high selectivity. Compared with 90Y, 177Lu, 225Ac, and 188Re, 211At seems to be more favored as a therapeutic candidate for FAPI tracers which have fast washout and short retention in tumor sites. Thus, the current study reported the synthesis of two FAPI precursors for 211At and 131I labeling and the preliminary evaluation of 131I-labeled FAPI analogues for cancer theranostics. FAPI variants with stannyl precursors were successfully synthesized and labeled with 131I using a radioiododestannylation reaction. Two radioactive tracers were obtained with high radiochemical purity over 99% and good radiochemical yields of 58.2 ± 1.78 and 59.5 ± 4.44% for 131I-FAPI-02 and 131I-FAPI-04, respectively. Both tracers showed high specific binding to U87MG cells in comparison with little binding to MCF-7 cells. Compared to 131I-FAPI-02, 131I-FAPI-04 exhibited higher affinity, more intracellular uptake, and longer retention time in vitro. Biodistribution studies revealed that both tracers were mainly excreted through the kidneys as well as the hepatobiliary pathway due to their high lipophilicity. In addition, higher accumulation, longer dwell time, and increased tumor-to-organ ratios were achieved by 131I-FAPI-04, which was clearly demonstrated by SPECT/CT imaging. Furthermore, intratumor injection of 131I-FAPI-04 significantly suppressed the tumor growth in U87MG xenograft mice without significant toxicity observed. The above results implied that FAP-targeted alpha endoradiotherapy (specific to 211At) should be used to treat tumors in the near future, considering the chemical similarity between iodine and astatine can ensure the labeling of the latter onto the designed FAPIs.


Asunto(s)
Astato/administración & dosificación , Proteínas de la Membrana/antagonistas & inhibidores , Neoplasias/terapia , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Endopeptidasas , Humanos , Radioisótopos de Yodo , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Trazadores Radiactivos , Nanomedicina Teranóstica/métodos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Inorg Chem ; 60(14): 10522-10534, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34212724

RESUMEN

In the present work, we proposed regulating uranyl coordination behavior of cucurbituril-bipyridinium pseudorotaxane ligand by utilizing meta-functionalized bipyridinium dicarboxylate guest. A tailored pseudorotaxane precursor involving 1,1'-(hexane-1,6-diyl)bis(3-cyanopyridin-1-ium) bromide (C6BPCN3) and cucurbit[6]uril (CB[6]) has designed and synthesized. Through in situ hydrolysis of the pseudorotaxane ligands and their coordination assembly with uranyl cations, seven new uranyl-rotaxane coordination polymers URCP1-URCP7 have been obtained under hydrothermal conditions in the presence of different anions. It is demonstrated that the variation of carboxylate groups from para- to meta-position greatly affected the coordination behaviors of the meta-functionalized pseudorotaxane linkers, which are enriched from simple guest-only binding to host-guest simultaneous coordination and synergistic chelating. This effective regulation on uranyl coordination of supramolecular pseudorotaxane can be attributed to the proximity effect, which refers to the meta-position carboxyl group being spatially closer to the portal carbonyl group of CB[6]. Moreover, by combining other regulation methods such as introducing competing counterions and modulating solution acidity, the nuclearity of the uranyl center and the coordination patterns of the pseudorotaxane ligand can be diversely tuned, which subsequently exert great influence on the final dimensionality of resultant uranyl compounds. This work presents a large diversity of uranyl-based coordination polyrotaxane compounds with fascinating mechanically interlocked components and, most importantly, provides a feasible approach to adjust and control the metal coordination behavior of the pseudorotaxane ligand that might expand the scope of application of such supramolecular ligands.

13.
Inorg Chem ; 59(6): 4058-4067, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32129613

RESUMEN

The incorporation of a mechanically interlocked molecule such as pseudorotaxane into metal-organic coordination polymers has afforded plenty of new hybrid materials with special structures and unique properties. In this work, we employ a weakly bound cucurbit[6]uril (CB[6])-bipyridinium pseudorotaxane as a supramolecular precursor to assemble with uranyl, aiming to construct uranyl-rotaxane coordination polymers (URCPs) with intriguing structures. By adjusting the synthetic conditions, a new kinked-helix uranyl rotaxane compound (URCP3), together with three other compounds URCP1, URCP2, and URCP4 varying from 1D chains to 2D interwoven networks, was obtained. Detailed structural analyses indicate that the pseudorotaxane ligand (C8BPCA@CB[6]) shows great configuration diversity in the construction of URCPs, which is most probably due to the weak binding strength between the host and guest molecules. Specifically, based on the monodentate coordination of the end carboxyl groups of C8BPCA forced by the surrounding unilaterally-chelated oxalate, the entire flexible pseudorotaxane linker will be more likely to undergo conformational change, thereby binding to the uranyl center from both sides of the uranyl equatorial plane and promoting the formation of a kinked helix structure of URCP3 that is shaped like a Chinese knot along [001]. This work enriches the library of actinide-rotaxane compounds and provides a new approach to construct metal-organic compounds with complicated structures using weakly bonded pseudorotaxanes as well.

14.
Inorg Chem ; 58(10): 6934-6945, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31038934

RESUMEN

Bipyridine organic bases are beneficial to the synthesis of novel uranyl-organic hybrid materials, but the relationship between their molecular structures and specific roles as structure-directing agents, especially for the semirigid dicarboxylate systems, is still unclear. Here we demonstrate how the bipyridine ligands direct the coordination assembly of uranyl-organic compounds with a semirigid dicarboxylate linker, 4,4'-dicarboxybiphenyl sulfone (H2dbsf), by utilizing a series of bipyridine ligands, 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bpy), 5,5'-dimethylbipyridine (5,5'-dmbpy), 4,4'-bipyridine (4,4'-bpy), or 1,3-di(4-pyridyl)propane (bpp). Under hydrothermal conditions, eight uranyl-organic coordination polymers (UCPs), four of which [[UO2(dbsf)(phen)] (1), [UO2(dbsf)(phen)]·H2O (1'), [U4O10(dbsf)3]2[H2bpp]2 (6), and [U4O10(dbsf)3]2[H2bpp] (6')] were reported previously, were synthesized and divided into two types based on the chelate or template effect of these bipyridine ligands. 1, 1', [UO2(dbsf)(2,2'-bpy)] (2), and [(UO2)2(dbsf)2(5,5'-dmbpy)2] (3) are springlike triple helices with bipyridine ligands (phen, 2,2'-bpy, or 5,5'-dmbpy) as chelate ligands, while [U4O10(dbsf)3][H2(4,4'-bpy)] (4), [U4O10(dbsf)3]2[H(4,4'-bpy)]2[Ni(H2O)6] (5), 6, and 6' are tetranuclear uranyl-mediated 2-fold-interpenetrating networks with 4,4'-bpy or bpp as template ligands and charge-balancing agents. The participation or not in uranyl coordination of different bipyridine ligands promotes not only diversity in uranyl speciation and final topological structures among different classes of organic bases but also consistency for the same types of bipyridine ligands, which thus endows the possibility of the rational design of UCPs based on semirigid dicarboxylate ligands with the aid of cautiously selected bipyridine ligands.

15.
Inorg Chem ; 58(5): 3271-3282, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30741536

RESUMEN

Pseudorotaxane-type ligands with tunable structural dynamics offer an opportunity in the exploration of new actinide hybrid materials. In this work, we utilized a weakly bonded pseudorotaxane ligand involving CB[6] and 1, 1'-(heptane-1, 7-diyl)bis(4-(ethoxycarbonyl)pyridin-1-ium) bromides ([C7BPCEt]Br2@CB[6]) to assemble with uranyl ion, and we systematically investigated the effect of different factors including pH and competing ligands on the hydrothermal synthesis of URCPs. Nine uranyl-rotaxane coordination polymers (URCPs) with diversity in coordination mode and topological structure were successfully prepared (two previously reported complexes, URCP1 and URCP2 are also included). The results indicate that sulfate, bromide, CB[6], and C7BPCA (the hydrolyzate of [C7BPCEt]Br2) show a combined influence on the obtained URCPs. At low pH, both CB[6] and C7BPCA can bond with uranyl centers and produce interwoven structures in URCP1, URCP2, and URCP6; at high pH, C7BPCA and competing anions (sulfate and bromide) have priority to coordinate with uranyl ions in URCP3-URCP5 and URCP7-URCP9. Notably, for the first time, bromide anion with lower affinity to uranyl ions is also observed in solid-state uranyl coordination polymer (URCP7-URCP9), which has been demonstrated by both energy dispersive X-ray spectroscopy and single-crystal X-ray structure analysis. In addition, a spontaneously single-crystal-to-single-crystal transformation from URCP3 to URCP4, which is driven by thermodynamics, was observed and explained by computational study. Moreover, it reveals that sulfate with stronger coordination ability can inhibit the hydrolysis of uranyl ion to some extent with only a rarely reported pentanuclear uranyl center found in URCP5 obtained at pH 5.67. These results indicate that the combined effect of competing ligands and pH has great significance in the formation of URCPs in terms of uranyl coordination and speciation and can be an alternative way to design and synthesize uranyl coordination polymers with new topologies.

16.
Inorg Chem ; 58(20): 14075-14084, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31573800

RESUMEN

As well-known functional groups with excellent electro/photochromic and ion-exchange properties, bipyridinium motifs have been used in functionalized metal-organic coordination polymers, but they are still rarely applied to construct actinide coordination polymers. In this work, we utilized a bipyridinium-based carboxylic acid, 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium bis(chloride) ([H2bcbp]Cl2), as the organic ligand to assemble with uranyl cations. By the introduction of different kinds of auxiliary ligands and adjustment of the pH, five novel uranyl coordination compounds, 1-5, have been synthesized through hydrothermal reactions. Starting from uranyl ions and terephthalic acid (H2TP) and H2bcbp ligands, [(UO2)2(bcbp)(TP)2]·3H2O (1) has a wave-shaped two-dimensional (2D) structure consisting of dinuclear units connected by terephthalate linkers and further supported by the longer H2bcbp ligands. [(UO2)2(bcbp)(PA)2]·4H2O (2) has a zigzag chain of dimeric uranium units, and [(UO2)2(bcbp)(bpdc)2]·5H2O (3) forms a one-dimensional ribbonlike structure. The 2D structures of [(UO2)(bcbp)(OH)(H2O)]·Cl (4) and [(UO2)(bcbp)Cl]·Cl (5) are similar, both of which are constructed from dinuclear uranyl units and bcbp2- ligands. Furthermore, the performance for perrhenate removal of compound 4 with a cationic framework is assessed, and we found that compound 4 can efficiently remove ReO4- from an aqueous solution in a wide range of pH values. This work extends the library of viologen derivative-based uranyl coordination polymers, provides to some extent broader insights into actinide coordination chemistry of functionalized ligands, and may facilitate the ion-exchange applications of related coordination polymers.

17.
Inorg Chem ; 57(23): 14772-14785, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30421609

RESUMEN

The fluorescence of uranyl originated from electronic transitions (S11-S00 and S10-S0v, v = 0-4) of the ligand-to-metal charge transfer (LMCT) process is an intrinsic property of many uranyl coordination compounds. However, light-induced regulation on fluorescence features of uranyl hybrid materials through photoactive functional groups is less investigated. In this work, the photoactive vinyl group-containing ligands, ( E)-methyl 3-(pyridin-4-yl)acrylate and ( E)-methyl 3-(pyridin-3-yl)acrylate, have been used in the construction of uranyl coordination polymers in the presence of 1,10-phenanthroline (phen). Five compounds (UO2)3(µ3-O)(µ2-OH)2(L1)2( phen)2(1), (UO2)3(µ3-O)(µ2-OH)3(L1)( phen)2 (2), (UO2)3(µ3-O)(µ2-OH)3(L2)( phen)2 (3), [(UO2)2(µ2-OH)2(L2)2( phen)2]·2H2O (4), and (UO2)Zn(SO4)(phen)(H2O)(OH)2(5) were obtained under hydrothermal conditions. Compounds 1-4 are polynuclear uranyl structures with abundant π-π interactions and hydrogen bonds contributed to the 3D crystal packing of them. As model compounds, 1 and 3 are selected for exploring photoresponsive behaviors. The emission intensities of these two compounds are found to decrease gradually over the exposure time of UV irradiation. X-ray single crystal structural analysis suggests that the fluorescence attenuation can be explained by the slight rotation of pyridinyl groups around the carbon-carbon double bond during UV irradiation, which is accompanied by the change of weak interactions, i.e., π-π interactions and hydrogen bonds in strength and density. This feature of light-induced fluorescence attenuation may enable these two compounds to act as potential photoresponsive sensor materials.

18.
Inorg Chem ; 57(21): 13513-13523, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351082

RESUMEN

As an emerging type of actinide hybrid material, uranyl-rotaxane coordination polymers (URCPs) with new coordination patterns and topological structures are still desired. In this work, we propose a new strategy to construct URCPs by promoting the simultaneous coordination of both the wheel and axle moieties in pseudorotaxane linkers with metal nodes. Starting from a series of cucurbit[6]uril (CB[6])-based pseudorotaxane ligands, C nBPCA@CB[6] [C nBPCA = 1,1-(α,ω-diyl)bis[4-(ethoxycarbonyl)pyridin-1-ium] bromides, where n = 5-8] with slightly deformed CB[6], four new URCPs (URCP1, URCP3, URCP4, and URCP5) with interwoven network structures, as well as another noninterwoven polymer(URCP2), have been successfully prepared. According to single-crystal structure analysis, we attribute the interwoven structures of the URCPs to the distortion of CB[6] in pseudorotaxane ligands with shorter or longer spacers (C5, C7, and C8). This indicates that the deformation could effectively diminish the steric hindrance around the portals, thus endowing the "inert" CB[6] host with coordination ability like the string molecule. Besides, the participation of water molecules and sulfate anions in the uranyl coordination sphere is also found to have a great influence on the final structures of the obtained URCPs. The successful preparation of interwoven URCPs in this work gives some new insights into the metal coordination of supramolecular entities and could facilitate other new applications of CB[6]-based pseudorotaxane ligands. Most importantly, the strategy proposed in this work provides some hints in the controllable design of metal-organic rotaxane frameworks with unique topologies.

19.
ACS Appl Mater Interfaces ; 16(7): 9343-9354, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346235

RESUMEN

No-carrier-added (NCA) 177Lu is one of the most interesting nuclides for endoradiotherapy. With the dramatically rapid development of radiopharmaceutical and nuclear medicine, there is a sharp increase in the radionuclide supply of NCA 177Lu, which has formed a great challenge to current radiochemical separation constituted on classical materials. Hence, it is of vital importance to design and prepare new functional materials able of recovering 177Lu from an irradiated target with excellent efficacy. In this work, we proposed to apply noncovalent interactions to regulate the porous properties of covalent organic frameworks (COFs) by tuning the branched chain, rendering related covalent hosts different encapsulation abilities toward a flexible guest, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507). More interestingly, we found that the noncovalent interaction has a great effect on the host-guest complexes, which can achieve efficient NCA 177Lu separation with high recovery (95.97%). A systematic mechanism combined with experimental and theoretical investigations has confirmed that the noncovalent interactions between COFs and P507 play a preeminent role in adjusting the macroscopic properties of the host-guest complexes. This work not only uncovers that noncovalent interactions can affect the basic properties of covalent organic bonded materials but also provides a strategy for the design and preparation of other new moieties with specific functionalities.

20.
ACS Appl Mater Interfaces ; 16(26): 33657-33668, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904104

RESUMEN

Reduction of soluble U(VI) to insoluble U(IV) based on photocatalysts is a simple, environmentally friendly, and efficient method for treating radioactive wastewater. The present study involved the systematic comparison of the photoelectric properties of three metalloporphyrins with different metal centers and the synthesis of a novel porphyrin-based hydrogen-bonded organic framework (Ni-pHOF) photocatalyst by modulating the surface charge microenvironment in porphyrin for enhanced photocatalytic removal of U(VI) from wastewater. Compared to the metal-free HOF, the surface charge microenvironment around the Ni atom in Ni-pHOF accelerated the reduction kinetics of U(VI) under visible light illumination at the initial moment, showing a high removal rate, even in air. The removal rate of U(VI) from aqueous solution by Ni-pHOF can achieve over 98% in the presence of coexisting nonoxidizing cations and only decreased by less than 8% after five cycles, exhibiting high selectivity and good reusability. Furthermore, Ni-pHOF can remove 86.74% of U(VI) from real low-level radioactive wastewater after 120 min of illumination, showcasing practical application potential. Density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) spectra indicated that modulating the surface charge microenvironment in Ni-pHOF through porphyrin metallization is conducive to improving the charge separation efficiency, prompting more e- and •O2- to participate in the reduction reaction of U(VI). This work provides new insights into the metallization of porphyrin-based HOFs and paves a new way for the tailoring of porphyrin-based HOFs/COFs by modulating the surface charge microenvironment to achieve efficient recovery of U(VI) from real radioactive wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA