Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chembiochem ; 25(1): e202300609, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37877236

RESUMEN

We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.


Asunto(s)
Benzoxazoles , Agua , Hemoglobinas Truncadas , Proteínas Bacterianas
2.
Biotechnol Appl Biochem ; 70(1): 130-136, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35285069

RESUMEN

N'-alkyl benzohydrazides are classic organic compounds that have been widely utilized in organic chemistry. In this study, an efficient method was developed for the synthesis of N'-alkyl benzohydrazides by hydrazine insertion catalyzed by lipase. Under the optimal conditions (Morita-Baylis-Hillman ketone [1 mmol], phenylhydrazine [1.3 mmol], N,N-dimethylformamide [2 ml], lipase [20 mg], room temperature, 12 h), satisfactory yields (71-97%) and substrate tolerance were obtained when porcine pancreatic lipase was used as biocatalyst. These findings imply the great potential for the lipase-catalyzed synthesis of N'-alkyl benzohydrazides and extend the utilization of lipase in organic chemistry.


Asunto(s)
Cetonas , Lipasa , Animales , Porcinos , Lipasa/química , Catálisis , Cetonas/química , Hidrazinas
3.
Molecules ; 27(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431898

RESUMEN

Organophosphorus compounds are the core structure of many active natural products. The synthesis of these compounds is generally achieved by metal catalysis requiring specifically functionalized substrates or harsh conditions. Herein, we disclose the phospha-Michael addition reaction of biphenyphosphine oxide with various substituted ß-nitrostyrenes or benzylidene malononitriles. This biocatalytic strategy provides a direct route for the synthesis of C-P bonds with good functional group compatibility and simple and practical operation. Under the optimal conditions (styrene (0.5 mmol), biphenyphosphine oxide (0.5 mmol), Novozym 435 (300 U), and EtOH (1 mL)), lipase leads to the formation of organophosphorus compounds in yields up to 94% at room temperature. Furthermore, we confirm the role of the catalytic triad of lipase in this phospha-Michael addition reaction. This new biocatalytic system will have broad applications in organic synthesis.


Asunto(s)
Lipasa , Compuestos Organofosforados , Lipasa/química , Estereoisomerismo , Catálisis , Óxidos
4.
Bioorg Chem ; 107: 104583, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421956

RESUMEN

BACKGROUND: Indoles are important bioactive compounds that have been extensively studied in organic chemistry. In this work, a green and efficient process for the synthesis of Indoles from 1,3-diketones with fumaronitrile was developed. RESULTS: Under optimal conditions (1,3-diketones (0.5 mmol), fumaronitrile (1 mmol), water (2 ml), lipase (15 mg), 30 °C, 24 h), high yields and satisfactory regioselectivity of cyano-containing multi-substituted indoles could be obtained when CRL (C. rugosa lipase) was used as the catalyst. CONCLUSION: This enzymatic method demonstrates the great potential for the synthesis of indoles and extends the application of enzyme in organic synthesis.


Asunto(s)
Candida/enzimología , Indoles/metabolismo , Lipasa/metabolismo , Pseudomonas aeruginosa/enzimología , Animales , Biocatálisis , Indoles/química , Estructura Molecular , Porcinos
5.
Med Sci Monit ; 24: 37-49, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29295970

RESUMEN

Long non-coding RNA (lncRNA) is a kind of non-coding RNA with transcripts more than 200 bp in length. LncRNA can interact with the miRNA as a competing endogenous RNA (ceRNA) to regulate the expression of target genes, which play a significant role in the initiation and progression of tumors. In this study, we explored the functional roles and regulatory mechanisms of lncRNAs as ceRNAs in gastric cancer, and their potential implications for prognosis. The lncRNAs, miRNAs, and mRNAs expression profiles of 375 gastric cancer tissues and 32 non-tumor gastric tissues were downloaded from The Cancer Genome Atlas (TCGA) database. Differential expression of RNAs was identified using the DESeq package. Survival analysis was estimated based on Kaplan-Meier curve analysis. KEGG pathway analysis was performed using KOBAS 3.0. The dysregulated lncRNA-associated ceRNA network was constructed in gastric cancer based on bioinformatics generated from miRcode and miRTarBase. A total of 237 differentially expressed lncRNAs and 198 miRNAs between gastric cancer and matched normal tissues were screened in our study with thresholds of |log2FC| >2 and adjusted P value <0.01. Eleven discriminatively expressed lncRNAs may be correlated with tumorigenesis of gastric cancer. Seven out of 11 dysregulated lncRNA were found to be significantly associated with overall survival in gastric cancer (P value <0.05). The newly identified ceRNA network includes 11 gastric cancer-specific lncRNAs, 9 miRNAs, and 41 mRNAs. Collectively, our study will contribute to improving the understanding of the lncRNA-associated ceRNA network regulatory mechanisms in the pathogenesis of gastric cancer and provide and identify novel lncRNAs as candidate prognostic biomarkers or potential therapeutic targets.


Asunto(s)
ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/genética , Biología Computacional , Bases de Datos Genéticas , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , MicroARNs/fisiología , Pronóstico , ARN Mensajero/genética , ARN Mensajero/fisiología , Análisis de Supervivencia
6.
Chem Sci ; 15(20): 7742-7748, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784746

RESUMEN

Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.

7.
Org Lett ; 25(30): 5692-5696, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37493546

RESUMEN

A photocatalyzed, efficient, and mild approach for the synthesis of various substituted isothiocyanates from amine and carbon disulfide was reported in this work. This approach expands the scope of photocatalytic applications and provides a new method for the preparation of aliphatic and aromatic isothiocyanates, which are significant organic building blocks and biological diagnostic markers.

8.
Org Lett ; 25(39): 7115-7119, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37737085

RESUMEN

Despite a well-developed and growing body of work on the directed evolution of hemoproteins, the potential of hemoproteins to catalyze non-natural reactions remains underexplored. This paper reports a new biocatalytic strategy for the one-pot synthesis of unnatural α-amino acids. Engineered variants of dual-function Vitreoscilla hemoglobin were found to efficiently catalyze N-H insertion and C-H sp3 alkylation, providing moderate to excellent yields (57%-95%) of unnatural α-amino acid derivatives and turnover numbers (1425-2375).

9.
Onco Targets Ther ; 16: 867-883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915320

RESUMEN

Purpose: Heterocyclic compounds are organic compounds with heterocyclic structures, which are common in drug molecules. They include pyrazines with diverse functions, including anti-cancer, antimicrobial, antidiabetic, and anticholinergic activities. In this study a new small molecular compound B7 based on tetrazolium substituted pyrazine was synthesized and its effect on the progression of colorectal cancer (CRC) and its potential mechanism were investigated. Methods: We synthesized a series of tetrazolium-substituted pyrazine compounds by chemoenzymatic method. NCM460 (Human), HCT116 (Human), SW480 (Human) cell lines were selected to analyse the inhibitory effect of B7 on CRC by CCK-8, apoptosis, cell migration and invasion, qPCR, Western blotting, molecular docking, immunofluorescence. Moreover, a CRC xenograft model of mice was used to analyzed the role of B7 in vivo. Results: Among these compounds, 3-methyl-5je-6-bis (1H-tetrazole-5-yl) pyrazine-2-carboxylic acid (B7) inhibited CRC cell proliferation and induced apoptosis. The expression of Caspase-3 was increased after B7 treatment. In addition, the mitochondria abnormalities was observed in B7 group due to decrease the expression of Beclin-1. In addition, B7 inhibited the migration and invasion in CRC cells. Finally, the results showed that B7 had anti-tumor activity in CRC xenograft model of mice. Conclusion: In summary, compound B7 was synthesized efficiently using tetrazolium-substituted pyrazine via a chemoenzymatic method. Moreover, B7 have ability to regulate the expression of Caspase-3 which induced apoptosis in CRC cells. In addition, decreased Beclin-1 expression after B7 treatment, indicating inhibited autophagy. This study showed that B7 effectively induced apoptosis and inhibited autophagy in CRC cells.

10.
Data Brief ; 36: 107045, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33997196

RESUMEN

The data presented here are related to the research paper entitled "Efficient Synthesis of Cyano-containing Multi-substituted Indoles Catalyzed by Lipase" [1]. In this data article, the lipase catalyzed synthetic procedures for the preparation of multi-substituted indoles and their derivatives were described. In total, 11 compounds were obtained and the optimum pH, reaction time and substrate ratio were screened through this study.

11.
Cancer Manag Res ; 13: 8425-8434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34785950

RESUMEN

OBJECTIVE: Although chemotherapy is one of the first line clinical treatment of tumors, the efficacy of chemotherapy has been severely restricted by the frequent occurrence of drug resistance phenomenon. Multiple studies found that miRNAs can regulate the chemosensitivity of tumor cells. Here, this study aimed to assess the potential role of the miR-15a-5p/cell division cycle-related protein 4 (CDCA4) axis in breast cancer (BC) resistance to Adriamycin. METHODS: In the present study, the relative expression of miRNA-15a-5p in MCF-7/ADR, MCF-7 and Hs578Bst was measured by qRT-PCR. MCF-7/ADR cells underwent transfection with an miR-15a-5p mimic and inhibitor, respectively. Transwell assays, flow cytometry and CCK8 were performed to examine the potential effects of the abnormal expression of miR-15a-5p. The association of aberrant miR-15a-5p expression with Adriamycin resistance in BC was determined in cultured MCF-7/ADR cells. Bioinformatics was employed to predict the genes targeted by miR-15a-5p. Moreover, the correlation between miR-15a-5p and its target gene, CDCA4, was evaluated based on qRT-PCR data. RESULTS: The expression of miR-15a-5p was significantly downregulated in MCF/ADR cells compared with MCF-7 and Hs578Bst cell lines. In the presence of Adriamycin, miR-15a-5p overexpression significantly increased cell chemosensitivity, as well as MCF-7/ADR cell proliferation, invasion, and migration, while promoting apoptosis and inducing cell-cycle arrest in the synthesis phase. CDCA4 RNA interference enhanced these effects as shown in our previous study. Bioinformatics identified CDCA4 as an miR-15a-5p target gene. qRT-PCR further demonstrated that CDCA4 and miR-15a-5p expression levels were inversely correlated. CONCLUSION: Adriamycin resistance in BC cells was, at least in part, altered by mRNA-15a-5p via regulation of its target gene, CDCA4, by controlling the cell cycle, which may provide some novel ideas for BC chemotherapy in the future.

12.
Org Lett ; 22(10): 3900-3904, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32337998

RESUMEN

In this work, an efficient dual-protein (lipase and hemoglobin) system was successfully constructed for the regioselective synthesis of quinoxalines in water. A set of quinoxalines were obtained in high yields under optimal reaction conditions. This dual-protein method exhibited a regioselectivity higher than those of previously reported methods. This study not only provides a green and mild strategy for the synthesis of quinoxalines but also expands the application of lipase and hemoglobin in organic synthesis.

13.
PLoS One ; 13(2): e0192494, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420609

RESUMEN

Long non-coding RNA (lncRNA) has been confirmed to act as a key regulatory molecule in different types of cancers and play a significant role in tumors initiation and progression. LncRNA can be as acompeting endogenous RNA(ceRNA) to regulate the expression of targeted genes by sponging miRNA. In the present study, we explore the functional roles and regulatory mechanisms of lncRNAs as ceRNAs in colon cancer and their potential implications for prognosis.The lncRNAs, miRNAs and mRNAs expression profiles of 341 colon cancer tissues and 27 non-tumor colon tissues were downloaded from The Cancer Genome Atlas (TCGA) database. Differential expression of RNAs was identified using the "DESeq" bioconductor package in R. PPI network of differentially expressed genes was constructed using the STRING database. Survival analysis was estimated based on Kaplan-Meier curve analysis. We used KOBAS 3.0 to analyze the KEGG pathway of DEGs. The dysregulated lncRNA-associated ceRNA network was constructed in colon cancer based on bioinformatics generated from miRanda, PicTar, TargetScan, miRDB and miRcode. A total of 791 DElncRNAs and 200 DEmiRNAs were identified in colon cancer compared with matched normal tissues with thresholds of |log2foldChange (FC)| >3.0and adjusted P value<0.05.Twenty DElncRNAs were identified, may be related to tumorigenesis and/or progression of colon cancer. Nine out of 20 dysregulated lncRNA were found to be significantly associated with overall survival (P value<0.05). Finally, we successfully constructed colon cancer-associated ceRNA network, including 9 colon cancer-specific lncRNAs, 13 miRNAS and 70 mRNAs. In conclusion, our study will contribute to improve the understanding of ceRNA network regulatory mechanisms in colon cancer. These identified novel lncRNAs can be as candidate prognostic biomarkers or potential therapeutic targets.


Asunto(s)
Neoplasias del Colon/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Anciano , Femenino , Humanos , Masculino
14.
Mol Med Rep ; 17(1): 1507-1512, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29257222

RESUMEN

The present study aimed to examine the effect of RNA interference targeting cell division cycle­associated protein 4 (CDCA4) on the proliferation and apoptosis of the MCF­7/ADR' human breast cancer cell line. CDCA4 has been shown to have a unique role in regulating cell cycle. In the present study, the expression of CDCA4 was suppressed by CDCA4­specific short hairpin (sh)RNA transfection of the human breast cancer cells, following which changes in the proliferation and apoptosis of the CDCA4­knockdown cells were compared with those of control shRNA­transfected cells. The results confirmed that CDCA4 RNA interference reduced the percentage of human breast cancer cells to <50%. In addition, RNA interference of CDCA4 resulted in a significant increase in the apoptotic rate of cells. Taken together, these results suggested that CDCA4 enhanced proliferation and reduced apoptosis in the MCF­7/ADM human breast cancer cells in vitro.


Asunto(s)
Apoptosis , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Interferencia de ARN
15.
Onco Targets Ther ; 10: 4037-4050, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28860812

RESUMEN

Papillary renal cell carcinoma (PRCC) is the second most common subtype of renal cell carcinoma, and it lacks effective therapeutic targets and prognostic molecular biomarkers. Attention has been increasingly focused on long noncoding RNAs (lncRNAs), which can act as competing endogenous RNA (ceRNA) to compete for shared microRNAs (miRNAs) in the tumorigenesis of human tumors. Therefore, to clarify the functional roles of lncRNAs with respect to the mediated ceRNA network in PRCC, we comprehensively integrated expression profiles, including data on mRNAs, lncRNAs and miRNAs obtained from 289 PRCC tissues and 32 normal tissues in The Cancer Genome Atlas. As a result, we identified 2,197 differentially expressed mRNAs (DEmRNAs) and 84 differentially expressed miRNAs (DEmiRNAs) using a threshold of |log2 (fold change)| >2.0 and an adjusted P-value <0.05. To determine the hub DEmRNAs that could be key target genes, a weighted gene co-expression network analysis was performed. A total of 28 hub DEmRNAs were identified as potential target genes. Seven dysregulated DEmiRNAs were identified that were significantly associated with the 28 hub potential target genes. In addition, we found that 16 differentially expressed lncRNAs were able to interact with the DEmiRNAs. Finally, we used Cytoscape software to visualize the ceRNA network with these differently expressed molecules. From these results, we believe that the identified ceRNA network plays a crucial role in the process of PRCC deterioration, and some of the identified genes are strongly related to clinical prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA