Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chem Rev ; 123(17): 10728-10749, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642645

RESUMEN

Phase engineering of nanomaterials (PEN) is an emerging field that aims to tailor the physicochemical properties of nanomaterials by precisely manipulating their crystal phases. To advance PEN effectively, it is vital to possess the capability of characterizing the structures and compositions of nanomaterials with precision. Transmission electron microscopy (TEM) is a versatile tool that combines reciprocal-space diffraction, real-space imaging, and spectroscopic techniques, allowing for comprehensive characterization with exceptional resolution in the domains of time, space, momentum, and, increasingly, even energy. In this Review, we first introduce the fundamental mechanisms behind various TEM-related techniques, along with their respective application scopes and limitations. Subsequently, we review notable applications of TEM in PEN research, including applications in fields such as metallic nanostructures, carbon allotropes, low-dimensional materials, and nanoporous materials. Specifically, we underscore its efficacy in phase identification, composition and chemical state analysis, in situ observations of phase evolution, as well as the challenges encountered when dealing with beam-sensitive materials. Furthermore, we discuss the potential generation of artifacts during TEM imaging, particularly in scanning modes, and propose methods to minimize their occurrence. Finally, we offer our insights into the present state and future trends of this field, discussing emerging technologies including four-dimensional scanning TEM, three-dimensional atomic-resolution imaging, and electron microscopy automation while highlighting the significance and feasibility of these advancements.

2.
J Am Chem Soc ; 146(31): 21989-21998, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39058766

RESUMEN

The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m-2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.

3.
J Am Chem Soc ; 146(17): 11855-11865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634945

RESUMEN

Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.

4.
Angew Chem Int Ed Engl ; 63(43): e202411048, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946177

RESUMEN

The direct liquid-phase oxidative carbonylation of methane, utilizing abundant natural gas, offers a mild and straightforward alternative. However, most catalysts proposed for this process suffer from low acetic acid yields due to few active sites and rapid C1 oxygenate generation, impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZSM-5-TF (TF denotes template-free synthesis) catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat -1 h-1 at 50 °C, tripling the previous records of 12.0 mmol gcat -1 h-1. Comprehensive characterization, isotope-labeled experiments and density functional theory (DFT) calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process, promoting C-C coupling for effective acetic acid synthesis. Furthermore, the methyl-group carbon in acetic acid originates solely from methane, while its carbonyl-group carbon is derived exclusively from CO, rather than the conversion of other C1 oxygenates. The proposed bimetallic catalyst design not only overcomes the limitations of current catalysts but also generalizes the oxidative carbonylation of other alkanes, demonstrating promising advancements in sustainable chemical synthesis.

5.
J Am Chem Soc ; 145(46): 25109-25119, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947830

RESUMEN

Zeolite-supported nickel (Ni) catalysts have been extensively studied for the dry reforming of methane (DRM). It is generally believed that prior to or during the reaction, Ni is reduced to a metallic state to act as the catalytic site. Here, we employed a ligand-protected synthesis method to achieve a high degree of Ni incorporation into the framework of the MFI zeolite. The incorporated Ni species retained their cationic nature during the DRM reaction carried out at 600 °C, exhibiting higher apparent catalytic activity and significantly greater catalytic stability in comparison to supported metallic Ni particles at the same loading. From theoretical and experimental evidence, we conclude that the incorporation of Ni into the zeolite framework leads to the formation of metal-oxygen (Niδ+-O(2-ξ)-) pairs, which serve as catalytic active sites, promoting the dissociation of C-H bonds in CH4 through a mechanism distinct from that of metallic Ni. The conversion of CH4 on cationic Ni single sites follows the CHx oxidation pathway, which is characterized by the rapid transformation of partial cracking intermediates CHx*, effectively inhibiting coke formation. The presence of the CHx oxidation pathway was experimentally validated by identifying the reaction intermediates. These new mechanistic insights elucidate the exceptional performance of the developed Ni-MFI catalyst and offer guidance for designing more efficient and stable Ni-based DRM catalysts.

6.
Nano Lett ; 21(17): 7309-7316, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410724

RESUMEN

Understanding surface reconstruction of nanocrystals is of great importance to their applications, however it is still challenging due to lack of atomic-level structural information under reconstruction conditions. Herein, through in situ spherical aberration corrected scanning transmission electron microscopy (STEM), the reconstruction of nanocrystalline SnO2 (110) surface was studied. By identifying the precise arrangements of surface/subsurface Sn and O columns through both in situ bright-field and high-angle annular dark-field STEM images, an unexpected added Sn2O model was determined for SnO2 (110)-(1 × 2) surface. The protruded Snδ+ of this surface could act as the active sites for activating O2 molecules according to our density functional theory (DFT) calculations. On the basis of in situ observation of atomic-level reconstruction behaviors and DFT calculations, an energy-driven reconstruction process was also revealed. We anticipate this work would help to clarify the long-standing debate regarding the reconstruction of SnO2 (110) surface and its intrinsic property.

7.
Langenbecks Arch Surg ; 400(7): 767-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26318178

RESUMEN

PURPOSE: The best treatment of distal radius fractures (DRFs) in the elderly is uncertain. The purpose of this meta-analysis was to compare the outcomes of surgical and nonsurgical management of DRFs in persons 65 years of age or older. METHODS: Medline, Cochrane, EMBASE, and Google Scholar databases were searched until April 27, 2015 using the following search terms: distal radius fracture, conservative treatment, nonoperative treatment, nonsurgical treatment, surgical treatment, operative, elderly, and older. The primary outcome measure was DASH score, and secondary outcomes were functional and radiological assessments. The standard difference in post-treatment means was calculated for the outcomes to compare the two groups. RESULTS: Of 59 articles identified, eight studies with a total of 440 patients in the surgical groups and 449 in the control groups were included in the analysis. No significant differences in DASH score, VAS pain score, grip strength, wrist extension, pronation, or supination, and ulnar deviation were noted between the groups. The nonsurgical group had significantly greater wrist flexion, radial deviation, and ulnar variance and less radial inclination than the surgical group. CONCLUSIONS: Surgical and nonsurgical methods produce similar results in the treatment of DRFS in the elderly, and minor objective functional differences did not result an impact on subjective function outcome and quality of life.


Asunto(s)
Moldes Quirúrgicos , Fijación Interna de Fracturas/métodos , Fracturas del Radio/cirugía , Rango del Movimiento Articular/fisiología , Traumatismos de la Muñeca/terapia , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Curación de Fractura/fisiología , Evaluación Geriátrica , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Dimensión del Dolor , Radiografía , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Recuperación de la Función , Medición de Riesgo , Traumatismos de la Muñeca/diagnóstico por imagen
8.
Sci Rep ; 14(1): 10222, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702417

RESUMEN

Recently, Transformer-based methods have gained prominence in image super-resolution (SR) tasks, addressing the challenge of long-range dependence through the incorporation of cross-layer connectivity and local attention mechanisms. However, the analysis of these networks using local attribution maps has revealed significant limitations in leveraging the spatial extent of input information. To unlock the inherent potential of Transformer in image SR, we propose the Multi-Attention Fusion Transformer (MAFT), a novel model designed to integrate multiple attention mechanisms with the objective of expanding the number and range of pixels activated during image reconstruction. This integration enhances the effective utilization of input information space. At the core of our model lies the Multi-attention Adaptive Integration Groups, which facilitate the transition from dense local attention to sparse global attention through the introduction of Local Attention Aggregation and Global Attention Aggregation blocks with alternating connections, effectively broadening the network's receptive field. The effectiveness of our proposed algorithm has been validated through comprehensive quantitative and qualitative evaluation experiments conducted on benchmark datasets. Compared to state-of-the-art methods (e.g. HAT), the proposed MAFT achieves 0.09 dB gains on Urban100 dataset for × 4 SR task while containing 32.55% and 38.01% fewer parameters and FLOPs, respectively.

9.
Chem Commun (Camb) ; 60(45): 5877, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38775135

RESUMEN

Correction for 'Facile preparation of a Ni-imidazole compound with high activity for ethylene dimerization' by Zhaohui Liu et al., Chem. Commun., 2024, 60, 188-191, https://doi.org/10.1039/D3CC04794F.

10.
Nat Commun ; 15(1): 2630, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521857

RESUMEN

Efficiently capturing radioactive methyl iodide (CH3I), present at low concentrations in the high-temperature off-gas of nuclear facilities, poses a significant challenge. Here we present two strategies for CH3I adsorption at elevated temperatures using a unified azolate-based metal-organic framework, MFU-4l. The primary strategy leverages counter anions in MFU-4l as nucleophiles, engaging in metathesis reactions with CH3I. The results uncover a direct positive correlation between CH3I breakthrough uptakes and the nucleophilicity of the counter anions. Notably, the optimal variant featuring SCN- as the counter anion achieves a CH3I capacity of 0.41 g g-1 at 150 °C under 0.01 bar, surpassing all previously reported adsorbents evaluated under identical conditions. Moreover, this capacity can be easily restored through ion exchange. The secondary strategy incorporates coordinatively unsaturated Cu(I) sites into MFU-4l, enabling non-dissociative chemisorption for CH3I at 150 °C. This modified adsorbent outperforms traditional materials and can be regenerated with polar organic solvents. Beyond achieving a high CH3I adsorption capacity, our study offers profound insights into CH3I capture strategies viable for practically relevant high-temperature scenarios.

11.
Nat Commun ; 15(1): 1616, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388567

RESUMEN

The reconstruction of rutile TiO2 (110) holds significant importance as it profoundly influences the surface chemistry and catalytic properties of this widely used material in various applications, from photocatalysis to solar energy conversion. Here, we directly observe the asymmetric surface reconstruction of rutile TiO2 (110)-(1×2) with atomic-resolution using in situ spherical aberration-corrected scanning transmission electron microscopy. Density functional theory calculations were employed to complement the experimental observations. Our findings highlight the pivotal role played by repulsive electrostatic interaction among the small polarons -formed by excess electrons following the removal of neutral oxygen atoms- and the subsequent surface relaxations induced by these polarons. The emergence and disappearance of these asymmetric structures can be controlled by adjusting the oxygen partial pressure. This research provides a deeper understanding, prediction, and manipulation of the surface reconstructions of rutile TiO2 (110), holding implications for a diverse range of applications and technological advancements involving rutile-based materials.

12.
Sci Adv ; 10(32): eadn7904, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121220

RESUMEN

The reconstruction of the polar CeO2 (100) surface has been a subject of long-standing debates due to its complexity and the limited availability of experimental data. Herein, we successfully reveal a CeO2 (100)-(4 × 6) surface reconstruction by combining in situ spherical aberration-corrected scanning transmission electron microscopy, density functional theory calculations, and a particle swarm optimization-based algorithm for structure searching. We have further elucidated the stabilizing mechanism of the reconstructed structure, which involves the splitting of the filled Ce(4f) states and the mixing of the lower-lying ones with the O(2p) orbitals, as evidenced by the projected density of states. We also reveal that the surface chemisorption properties toward water molecules, an important step in numerous heterogeneous catalytic reactions, are enhanced. These insights into the distinct properties of ceria surface pave the way for performance improvements of ceria in a wide range of applications.

13.
Adv Mater ; 36(7): e2308429, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37865868

RESUMEN

Graphdiyne (GDY) is an artificial carbon allotrope that is conceptually similar to graphene but composed of sp- and sp2 -hybridized carbon atoms. Monolayer GDY (ML-GDY) is predicted to be an ideal 2D semiconductor material with a wide range of applications. However, its synthesis has posed a significant challenge, leading to difficulties in experimentally validating theoretical properties. Here, it is reported that in situ acetylenic homocoupling of hexaethynylbenzene within the sub-nanometer interlayer space of MXene can effectively prevent out-of-plane growth or vertical stacking of the material, resulting in ML-GDY with in-plane periodicity. The subsequent exfoliation process successfully yields free-standing GDY monolayers with micrometer-scale lateral dimensions. The fabrication of field-effect transistor on free-standing ML-GDY makes the first measurement of its electronic properties possible. The measured electrical conductivity (5.1 × 103 S m-1 ) and carrier mobility (231.4 cm2 V-1 s-1 ) at room temperature are remarkably higher than those of the previously reported multilayer GDY materials. The space-confined synthesis using layered crystals as templates provides a new strategy for preparing 2D materials with precisely controlled layer numbers and long-range structural order.

14.
Chem Commun (Camb) ; 60(2): 188-191, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38044830

RESUMEN

A compound consisting of Ni and imidazole (Ni-imidazole) was synthesized in large quantities by a one-step co-precipitation method. The structure and stability of this Ni-imidazole were well studied by a series of characterization methods. The Ni-imidazole compound exhibited excellent catalytic properties for the dimerization of ethylene to 1-butene.

15.
Science ; 380(6645): 633-638, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167385

RESUMEN

Structural and compositional inhomogeneity is common in zeolites and considerably affects their properties. Thickness-limited lateral resolution, lack of depth resolution, and electron dose-constrained focusing limit local structural studies of zeolites in conventional transmission electron microscopy (TEM). We demonstrate that a multislice ptychography method based on four-dimensional scanning TEM (4D-STEM) data can overcome these limitations. Images obtained from a ~40-nanometer-thick MFI zeolite exhibited a lateral resolution of ~0.85 angstrom that enabled the identification of individual framework oxygen (O) atoms and the precise determination of the orientations of adsorbed molecules. Furthermore, a depth resolution of ~6.6 nanometers allowed probing of the three-dimensional distribution of O vacancies, as well as the phase boundaries in intergrown MFI and MEL zeolites. The 4D-STEM ptychography can be generally applied to other materials with similar high electron-beam sensitivity.

16.
Adv Mater ; 35(35): e2302233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37261943

RESUMEN

Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd2 Sn and monoclinic Pd3 Sn2 . Benefiting from the rational regulation of the crystal phase and morphology, the obtained hollow orthorhombic Pd2 Sn NPs deliver excellent electrocatalytic performance toward glycerol oxidation reaction (GOR), outperforming solid orthorhombic Pd2 Sn NPs, hollow monoclinic Pd3 Sn2 NPs, and commercial Pd/C, which places it among the best reported Pd-based GOR electrocatalysts. The reaction mechanism of GOR using the hollow orthorhombic Pd2 Sn as the catalyst is investigated by operando infrared reflection absorption spectroscopy, which reveals that the hollow orthorhombic Pd2 Sn catalyst cleaves the CC bond more easily compared to the commercial Pd/C. This work can pave an appealing route to the controlled synthesis of diverse novel intermetallic nanomaterials with hollow morphology for various promising applications.

17.
ACS Cent Sci ; 8(12): 1579-1588, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589892

RESUMEN

Recent advances in high-speed pixelated electron detectors have substantially facilitated the implementation of four-dimensional scanning transmission electron microscopy (4D-STEM). A critical application of 4D-STEM is electron ptychography, which reveals the atomic structure of a specimen by reconstructing its transmission function from redundant convergent-beam electron diffraction patterns. Although 4D-STEM ptychography offers many advantages over conventional imaging modes, this emerging technique has not been fully applied to materials highly sensitive to electron beams. In this Outlook, we introduce the fundamentals of 4D-STEM ptychography, focusing on data collection and processing methods, and present the current applications of 4D-STEM ptychography in various materials. Next, we discuss the potential advantages of imaging electron-beam-sensitive materials using 4D-STEM ptychography and explore its feasibility by performing simulations and experiments on a zeolite material. The preliminary results demonstrate that, at the low electron dose required to preserve the zeolite structure, 4D-STEM ptychography can reliably provide higher resolution and greater tolerance to the specimen thickness and probe defocus as compared to existing imaging techniques. In the final section, we discuss the challenges and possible strategies to further reduce the electron dose for 4D-STEM ptychography. If successful, it will be a game-changer for imaging extremely sensitive materials, such as metal-organic frameworks, hybrid halide perovskites, and supramolecular crystals.

18.
ACS Cent Sci ; 8(2): 150-152, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35233446
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA