Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Med Chem ; 90: 117352, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257255

RESUMEN

Ferroptosis is a new type of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) has been considered as an effective cancer treatment strategy, but only few GPX4 inhibitors have been reported to date. Targeted protein degradation is receiving increasing attention in the discovery and development of therapeutic modality, particularly proteolysis targeting chimeras (PROTACs). Herein, we reported the design, synthesis, and evaluation of different types of GPX4-targeting PROTACs using ML162 derivatives and ligands for CRBN/VHL E3 ligases. Among them, CRBN-based PROTAC GDC-11 showed a relatively balanced biological profile in GPX4 degradation (degradation rate of 33% at 10 µM), cytotoxicity (IC50 = 11.69 µM), and lipid peroxides accumulation (2-foldincreaserelatedtoDMSO), suggesting a typical characteristic of ferroptosis. In silico docking and quantum chemistry theoretical calculations provided a plausible explanation for the moderate degrading effect of these synthesized PROTACs. Overall, this work lays the foundation for subsequent studies of GPX4-targeting PROTACs, and further design and synthesis of GPX4-targeting degrader are currently in progress in our group, which will be reported in due course.


Asunto(s)
Hierro , Peróxidos Lipídicos , Proteolisis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Peróxidos , Quimera Dirigida a la Proteólisis
2.
Pharmacol Res ; 185: 106490, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216131

RESUMEN

Acquired drug resistance and epithelial-mesenchymal transition (EMT) mediated metastasis are two highly interacting determinants for non-small-cell lung cancer (NSCLC) prognosis. This study investigated the common mechanisms of drug resistance and EMT from the perspective of metabolic reprogramming, which may offer new ideas to improve anticancer therapy. Acquired resistant cells were found to grow faster and have a greater migratory and invasive capacity than their parent cells. Metabolomics analysis revealed that acquired resistant cells highly relied on glutamine utilization and mainly fluxed into oxidative phosphorylation energy production. Further mechanistic studies screened out glutamate dehydrogenase 1 (GLUD1) as the determinant of glutamine addiction in acquired resistant NSCLC cells, and provided evidence that GLUD1-mediated α-KG production and the accompanying reactive oxygen species (ROS) accumulation primarily triggered migration and invasion by inducing Snail. Pharmacological and genetic interference with GLUD1 in vitro significantly reversed drug resistance and decreased cell migration and invasion capability. Lastly, the successful application of R162, a selective GLUD1 inhibitor, to overcome both acquired resistance and EMT-induced metastasis in vivo, identified GLUD1 as a promising and druggable therapeutic target for malignant progression of NSCLC. Collectively, our study offers a potential strategy for NSCLC therapy, especially for drug-resistant patients with highly expressed GLUD1.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/uso terapéutico , Glutamina/metabolismo , Glutamina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factores de Transcripción de la Familia Snail/metabolismo
3.
Bioorg Med Chem ; 71: 116941, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944386

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a key regulator of many human cancers and has been widely recognized as a promising target for cancer therapy. A variety of small-molecule inhibitors have been developed for targeting STAT3, and some of them are now undergoing clinical trials. S3I-201, a known STAT3 inhibitor, may block STAT3 function in cancer cells by binding to the STAT3 SH2 domain to disrupt STAT3 protein complex formation. Using S3I-201 as a starting point for drug development, we synthesized a series of new STAT3 inhibitors 9a-x in this study by introducing naphthoquinone unit, a privileged fragment in STAT3 inhibitors. Most of the compounds exhibited strong anti-proliferation activity of gastric cancer cells (MGC803, MKN28, MNK1, and AGS). The representative compound 9n (SIL-14) could effectively inhibit the colony formation and migration of gastric cancer cells MGC803, arrest the cell cycle and induce MGC803 cell apoptosis at low micromolar concentrations in vitro. In addition, SIL-14 can also inhibit the phosphorylation of STAT3 protein and significantly decrease the expression of total STAT3, suggesting that it may exert anticancer effects by blocking the STAT3 signaling pathway. These results support that SIL-14 may be a promising STAT3 inhibitor for the further development of potential anti-gastric cancer candidates.


Asunto(s)
Naftoquinonas , Neoplasias Gástricas , Ácidos Aminosalicílicos/farmacología , Ácidos Aminosalicílicos/uso terapéutico , Bencenosulfonatos , Línea Celular Tumoral , Proliferación Celular , Humanos , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo
4.
J Enzyme Inhib Med Chem ; 37(1): 2004-2016, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35844184

RESUMEN

Gastric cancer remains a significant health burden worldwide. In continuation of our previous study and development of effective small molecules against gastric cancer, a series of benzochalcone analogues involving heterocyclic molecules were synthesised and biologically evaluated in vitro and in vivo. Among them, the quinolin-6-yl substituted derivative KL-6 inhibited the growth of gastric cancer cells (HGC27, MKN28, AZ521, AGS, and MKN1) with a submicromolar to micromolar range of IC50, being the most potent one in this series. Additionally, KL-6 significantly inhibited the colony formation, migration and invasion, and effectively induced apoptosis of MKN1 cells in a concentration-dependent manner. The mechanistic study revealed that KL-6 could concentration-dependently suppress STAT3 phosphorylation, which may partly contribute to its anticancer activity. Furthermore, in vivo antitumour study on the MKN1 orthotopic tumour model showed that KL-6 effectively inhibited tumour growth (TGI of 78%) and metastasis without obvious toxicity. Collectively, compound KL-6 may support the further development of candidates for gastric cancer treatment.


Asunto(s)
Chalconas , Factor de Transcripción STAT3 , Neoplasias Gástricas , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/farmacología , Humanos , Terapia Molecular Dirigida , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361883

RESUMEN

Nephrotoxicity is the dose-limiting factor of cisplatin treatment. Magnesium isoglycyrrhizinate (MgIG) has been reported to ameliorate renal ischemia-reperfusion injury. This study aimed to investigate the protective effect and possible mechanisms of MgIG against cisplatin-induced nephrotoxicity from the perspective of cellular pharmacokinetics. We found that cisplatin predominantly accumulated in mitochondria of renal tubular epithelial cells, and the amount of binding with mitochondrial DNA (mtDNA) was more than twice that with nuclear DNA (nDNA). MgIG significantly lowered the accumulation of cisplatin in mitochondria and, in particular, the degree of target-binding to mtDNA. MgIG notably ameliorated cisplatin-induced changes in mitochondrial membrane potential, morphology, function, and cell viability, while the magnesium donor drugs failed to work. In a mouse model, MgIG significantly alleviated cisplatin-caused renal dysfunction, pathological changes of renal tubules, mitochondrial ultrastructure variations, and disturbed energy metabolism. Both in vitro and in vivo data showed that MgIG recovered the reduction of NAD+-related substances and NAD+-dependent deacetylase sirtuin-3 (SIRT3) level caused by cisplatin. Furthermore, SIRT3 knockdown weakened the protective effect of MgIG on mitochondria, while SIRT3 agonist protected HK-2 cells from cisplatin and specifically reduced platinum-binding activity with mtDNA. In conclusion, MgIG reduces the target-binding amount of platinum to mtDNA and exerts a protective effect on cisplatin-induced renal injury through SIRT3, which may provide a new strategy for the treatment of cisplatin-induced nephrotoxicity.


Asunto(s)
Cisplatino , Sirtuina 3 , Ratones , Animales , Cisplatino/efectos adversos , Cisplatino/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , ADN Mitocondrial/metabolismo , Platino (Metal)/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Túbulos Renales/metabolismo
6.
BMC Cancer ; 21(1): 1297, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863141

RESUMEN

BACKGROUND: Colorectal cancer is a malignant gastrointestinal cancer, in which some advanced patients would develop cancer cachexia (CAC). CAC is defined as a multi-factorial syndrome characterized by weight loss and muscle loss (with or without fat mass), leading to progressive dysfunction, thereby increasing morbidity and mortality. ApcMin/+ mice develop spontaneous intestinal adenoma, which provides an established model of colorectal cancer for CAC study. Upon studying the ApcMin/+ mouse model, we observed a marked decrease in weight gain beginning around week 15. Such a reduction in weight gain was rescued when ApcMin/+ mice were crossed with MMP12-/- mice, indicating that MMP12 has a role in age-related ApcMin/+-associated weight loss. As a control, the weight of MMP12-/- mice on a weekly basis, their weight were not significantly different from those of WT mice. METHODS: ApcMin/+; MMP12-/- mice were obtained by crossing ApcMin/+ mice with MMP12 knockout (MMP12 -/-) mice. Histological scores were assessed using hematoxylin-eosin (H&E) staining. MMP12 expression was confirmed by immunohistochemistry and immunofluorescence staining. ELISA, protein microarrays and quantitative Polymerase Chain Reaction (qPCR) were used to investigate whether tumor could up-regulate IL-6. Cell-based assays and western blot were used to verify the regulatory relationship between IL-6 and MMP12. Fluorescence intensity was measured to determine whether MMP12 is associated with insulin and insulin-like growth factor 1 (IGF-1) in vitro. MMP12 inhibitors were used to explore whether MMP12 could affect the body weight of ApcMin/+ mice. RESULTS: MMP12 knockout led to weight gain and expansion of muscle fiber cross-sectional area (all mice had C57BL/6 background) in ApcMin/+ mice, while inhibiting MMP12 could suppress weight loss in ApcMin/+ mice. MMP12 was up-regulated in muscle tissues and peritoneal macrophages of ApcMin/+ mice. IL-6 in tumor cells and colorectal cancer patients is up-regulation. IL-6 stimulated MMP12 secretion of macrophage. CONCLUSIONS: MMP12 is essential for controlling body weight of Apc Min/+ mice. Our study shows that it exists the crosstalk between cancer cells and macrophages in muscle tissues that tumor cells secrete IL-6 inducing macrophages to up-regulate MMP12. This study may provide a new perspective of MMP12 in the treatment for weight loss induced by CAC.


Asunto(s)
Caquexia/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Animales , Genotipo , Humanos , Ratones , Ratones Noqueados
7.
Cancer Immunol Immunother ; 69(8): 1409-1421, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32242260

RESUMEN

MMP12 is mainly secreted by macrophages, is involved in macrophage development, and decomposes the extracellular matrix. Herein, we investigated whether macrophages would change in the intestinal tumor microenvironment after MMP12 knockout. ApcMin/+;MMP12-/-mice were obtained by crossbreeding ApcMin/+ mice with MMP12 knockout mice (MMP12-/- mice). The data showed that the number and volume of intestinal tumors were significantly increased in ApcMin/+;MMP12-/- mice compared with ApcMin/+ mice. Additionally, the tumor biomarkers CA19-9, CEA, and ß-catenin appeared relatively early in intestinal tumors in ApcMin/+;MMP12-/- mice. The results demonstrated that knocking out MMP12 accelerated the tumor growth and pathological process. On further investigation of its mechanism, the proportions of M2 macrophages in the spleen and among peritoneal macrophages were significantly up-regulated in ApcMin/+;MMP12-/- mice. Expression of M2 macrophage-related genes was up-regulated in tumor and peritoneal macrophages. The M2-related cytokine levels of IL-4 and IL-13 were increased in the serum of ApcMin/+;MMP12-/-mice. In vitro, bone marrow-derived M2 macrophages were obtained by treating bone marrow cells with IL-4 and IL-13, and these M2 macrophages secreted cytokines being changed. This finding reveals the crucial role of MMP12 in macrophage development and provides a new target for the control of macrophage polarization. Knocking out MMP12 causes intestinal M2 macrophage accumulation in tumor microenvironment, promoting the growth of intestinal tumors in ApcMin/+ mice.


Asunto(s)
Neoplasias Intestinales/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/patología , Metaloproteinasa 12 de la Matriz/fisiología , Microambiente Tumoral/inmunología , Animales , Citocinas/metabolismo , Femenino , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/patología , Macrófagos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Dalton Trans ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912609

RESUMEN

NHC-based pincers (NHC = N-heterocyclic carbene) have been broadly employed as supporting platforms, and their palladium complexes have found many synthetic applications. However, previous studies mainly focused on the NHC pincers of palladium featuring an oxidation number of +II. In contrast, oxidation of these well-defined Pd(II) species and the study of their fundamental high-valent Pd chemistry remain largely undeveloped. In addition, from a perspective of PdII/PdIV catalysis, the reactivity and degradation of NHC pincers in catalytically relevant reactions have not been well understood. In this work, a series of Pd(II) complexes supported by a well-known NHC^Aryl^NHC pincer platform have been prepared. Their reactivity towards various oxidizing reagents, including halogen surrogates, electrophilic fluorine reagents, and alkyl/aryl halides, has been examined. In some cases, ambient-characterizable high-valent Pd NHCs, which have been scarcely reported, were obtained. The carbenes incorporated into the pincer framework proved to be effective spectator donors. In contrast, the central aryl moiety exhibits versatile reactivity and collapse pathways, allowing it to function either as a spectator or a non-innocent actor.

9.
Am J Cardiovasc Drugs ; 24(1): 129-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142441

RESUMEN

INTRODUCTION: Infection may induce thrombotic and hemorrhagic events; however, it is currently unclear whether the inflammatory response affects the coagulation function and the clinical efficacy and safety of rivaroxaban in older patients with non-valvular atrial fibrillation (NVAF). OBJECTIVE: This project aimed to assess the effectiveness and safety of the non-vitamin K antagonist oral anticoagulant rivaroxaban in older patients with NVAF complicated by infection, and to provide a basis for possible drug dose adjustment. METHODS: A total of 152 NVAF patients aged ≥ 65 years admitted to the Fifth People's Hospital of Shanghai from June 2020 to May 2022 were included in this prospective, observational study. The changes in steady-state plasma concentration of rivaroxaban and FXa inhibition rate were compared between patients with and without infection, and the impact on the occurrence of infection, thrombotic events, and bleeding events was compared through 1-year follow-up. RESULTS: Our results showed that patients in the infection group had abnormal inflammation markers, as well as an increased occurrence of bleeding and thrombotic events during hospitalization and follow-up. The high incidence of bleeding events in patients was closely related to the occurrence of infection, lymphocyte reduction, and increased neutrophil-lymphocyte ratio. The increase in thrombotic events was related to a decrease in rivaroxaban plasma concentration. Bleeding events in patients taking anticoagulant drugs are not necessarily due to drug accumulation. CONCLUSIONS: Timely control of infection, assessment of bleeding and thrombotic risks, and selection of appropriate anticoagulation treatment strategies should be made in older NVAF patients who develop pulmonary infection. CLINICAL TRIALS REGISTRATION: Chinese Clinical Trial Registry Number ChiCTR2000033144.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Anciano , Rivaroxabán/efectos adversos , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/complicaciones , Estudios Prospectivos , China , Anticoagulantes/efectos adversos , Hemorragia/inducido químicamente , Hemorragia/epidemiología , Accidente Cerebrovascular/epidemiología , Inhibidores del Factor Xa/efectos adversos
10.
Micromachines (Basel) ; 15(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675234

RESUMEN

With the advancement of Moore's Law reaching its limits, advanced packaging technologies represented by Flip Chip (FC), Wafer-Level Packaging (WLP), System in Package (SiP), and 3D packaging have received significant attention. While advanced packaging has made breakthroughs in achieving high performance, miniaturization, and low cost, the smaller thermal space and higher power density have created complex physical fields such as electricity, heat, and stress. The packaging interconnects responsible for electrical transmission are prone to serious reliability issues, leading to the device's failure. Therefore, conducting multi-field coupling research on the reliability of advanced packaging interconnects is necessary. The development of packaging and the characteristics of advanced packaging are reviewed. The reliability issues of advanced packaging under thermal, electrical, and electromagnetic fields are discussed, as well as the methods and current research of multi-field coupling in advanced packaging. Finally, the prospect of the multi-field coupling reliability of advanced packaging is summarized to provide references for the reliability research of advanced packaging.

11.
Mol Immunol ; 160: 32-43, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343421

RESUMEN

CD8 + effector cells are highly skilled in immune surveillance and contribute to adaptive immunity against cancer cells. An increasing number of molecular factors affecting T-cell differentiation may alter T-cell function by increasing or decreasing the capacity of the immune system to kill cancer cells. Here, Sh3kbp1 binding protein 1 (Shkbp1), known as CIN85 binding protein or SETA binding protein, was found to be expressed in immune organs and immune cells. Shkbp1 knockout mice presented abnormal red and white pulp structures in spleen. Shkbp1 knockout increased CD8 + T cell number in spleen and enhanced the function of isolated CD8 + T cells from Shkbp1 knockout mice. The subcutaneous melanoma model in Shkbp1 knockout mice showed that tumor growth was inhibited, and the infiltration of CD8 + T cells in tumor tissue was increased. Furthermore, adenoviral therapy targeting Shkbp1 indicated that knockout of Shkbp1 increased CD8 + T cells and inhibited tumor growth. This study provides new insights into the role of Shkbp1 in CD8 differentiation and functions, suggesting that Shkbp1 may be a new, potential target in cancer immunotherapy.


Asunto(s)
Melanoma , Ratones , Animales , Ratones Noqueados , Diferenciación Celular , Activación de Linfocitos , Linfocitos T CD8-positivos , Ratones Endogámicos C57BL , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
12.
Curr Med Chem ; 29(25): 4391-4409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152859

RESUMEN

Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases, including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure and the recent development in BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.


Asunto(s)
Neoplasias , Proteínas Nucleares , Proteínas de Ciclo Celular/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteolisis , Factores de Transcripción/metabolismo
13.
Cancer Gene Ther ; 29(6): 709-721, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34112919

RESUMEN

Epidermal growth factor receptor (EGFR) is widely accepted in cancer diagnosis and targeted therapy. Shkbp1 is an upstream molecule of EGFR, which prevents EGFR degradation. However, the role of Shkbp1 in tumor remains to be clarified. Herein we induced tumor in the lungs of Shkbp1 knockout mice with chemical drugs to investigate the function of Shkbp1. Compared with wild-type mice, tumors in the lungs were significantly fewer in Shkbp1 knockout mice. To further explore the biological characteristics and functions of Shkbp1 in cancer cells, we established cell lines with overexpression and low expression of Shkbp1, respectively. Results from our experiments showed that low expression of Shkbp1 in lung cancer remarkably inhibited cancer cell migration and invasion, while overexpression of Shkbp1 promoted their migration and invasion, which indicated that Shkbp1 was closely related with tumor migration and invasion. The mRNA expression analysis of 494 matched tumor and adjacent non-tumor tissues (data derived from TCGA database) revealed that Shkbp1 was associated with the clinic TNM staging. Furthermore, immunohistochemistry (IHC) analysis of tissue microarrays showed that Shkbp1 was also correlated with lymphatic metastasis. Mechanistically, we observed that Shkbp1 was associated with epithelial-mesenchymal transition (EMT) marker. More interestingly, Shkbp1 was also expressed in a variety of immune cells, and we hereby used a subcutaneous transplantation tumor model and a metastasis model created by tail vein injection to explore whether Shkbp1 could impact tumor growth. The results showed that Shkbp1 knockout reduced tumor growth in both tumor models. In general, our results suggest that knocking out Shkbp1 in either immune cells or tumor cells could suppress tumor growth and metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transición Epitelial-Mesenquimal , Receptores ErbB , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Invasividad Neoplásica/genética , Metástasis de la Neoplasia
14.
Front Pharmacol ; 13: 944455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034876

RESUMEN

Gastric cancer is a common malignant tumor that threatens human health, and its occurrence and development mechanism is a complex process involving multiple genes and multiple signals. Signal transducer and activator of transcription 3 (STAT3) has been elucidated as a promising target for developing anticancer drugs in gastric cancer. However, there is no FDA-approved STAT3 inhibitor yet. Herein, we report the design and synthesis of a class of STAT3 degraders based on proteolysis-targeting chimeras (PROTACs). We first synthesized an analog of the STAT3 inhibitor S3I-201 as a ligand, using the cereblon (CRBN)/cullin 4A E3 ligase ligand pomalidomide to synthesize a series of PROTACs. Among them, the SDL-1 achieves the degradation of STAT3 protein in vitro, and exhibits good anti-gastric cancer cell proliferation activity, inhibits invasion and metastasis of MKN1 cell, and induces MKN1 cell apoptosis and arrests cell cycle at the same time. Our study shows that SDL-1 is a potent STAT3 degrader and may serve as a potential anti-gastric cancer drug, providing ideas for further development of drugs for clinical use.

15.
Oxid Med Cell Longev ; 2022: 2188145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941903

RESUMEN

Purpose: OA is a multifactorial joint disease in which inflammation plays a substantial role in the destruction of joints. Corynoline (COR), a component of Corydalis bungeana Turcz., has anti-inflammatory effects. Materials and Methods: We evaluated the significance and potential mechanisms of COR in OA development. The viabilities of chondrocytic cells upon COR exposure were assessed by CCK-8 assays. Western blot, qPCR, and ELISA were used to assess extracellular matrix (ECM) degeneration and inflammation. The NF-κB pathway was evaluated by western blot and immunofluorescence (IF). Prediction of the interacting proteins of COR was done by molecular docking, while Nrf2 knockdown by siRNAs was performed to ascertain its significance. Micro-CT, H&E, Safranin O-Fast Green (S-O), toluidine blue staining, and immunohistochemical examination were conducted to assess the therapeutic effects of COR on OA in destabilization of medial meniscus (DMM) models. Results: COR inhibited ECM degeneration and proinflammatory factor levels and modulated the NF-κB pathway in IL-1ß-treated chondrocytes. Mechanistically, COR bound Nrf2 to downregulate the NF-κB pathway. Moreover, COR ameliorated the OA process in DMM models. Conclusion: We suggest that COR ameliorates OA progress through the Nrf2/NF-κB axis, indicating COR may have a therapeutic potential for OA.


Asunto(s)
FN-kappa B , Osteoartritis , Alcaloides de Berberina , Células Cultivadas , Condrocitos/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
16.
J Hematol Oncol ; 14(1): 138, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488823

RESUMEN

Targeting pathogenic proteins with small-molecule inhibitors (SMIs) has become a widely used strategy for treating malignant tumors. However, most intracellular proteins have been proven to be undruggable due to a lack of active sites, leading to a significant challenge in the design and development of SMIs. In recent years, the proteolysis-targeting chimeric technology and related emerging degradation technologies have provided additional approaches for targeting these undruggable proteins. These degradation technologies show a tendency of superiority over SMIs, including the rapid and continuous target consumption as well as the stronger pharmacological effects, being a hot topic in current research. This review mainly focuses on summarizing the development of protein degradation technologies in recent years. Their advantages, potential applications, and limitations are also discussed. We hope this review would shed light on the design, discovery, and clinical application of drugs associated with these degradation technologies.


Asunto(s)
Descubrimiento de Drogas/métodos , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos , Terapia Molecular Dirigida , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química
17.
Behav Brain Res ; 414: 113486, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34302872

RESUMEN

Depression is a common psychiatric disorder that can occur throughout an individual's lifespan. Chronic unpredictable mild stress (CUMS) protocol is currently the most commonly used to develop an animal model of depression. Due to the variable duration and procedure of CUMS, it is difficult to reproduce and explore the mechanism of CUMS-induced depression effectively. In the present study, the CUMS-induced behavioral phenotypes were assessed in male C57BL/6J mice at the age of 9-18 weeks. The mice stressed for 3-8 weeks exhibited lower body weight as well as longer immobility time of forced swim and tail suspension test compared to control mice. Moreover, lessening and impairment of hippocampal neurons was found in stressed mice at the age of 18 weeks, which was correlated with increased relative mRNA expression levels of inflammatory cytokines BDNF, Htr1a, and IL-6 in the hippocampus. Nevertheless, no difference between stressed and control mice was observed neither in the sucrose preference nor in the open field test (except for vertical activity in OFT) at the age of 18 weeks. These findings reveal that 3-8 weeks of chronic stress could induce depression-like alterations in male C57BL/6J mice and the behavioral adaptation of aged mice might fail to the availability of the depression model.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/fisiología , Depresión/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Depresión/etiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/complicaciones
18.
Eur J Med Chem ; 218: 113388, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33784603

RESUMEN

Diabetic kidney disease (DKD) is a major feature of the final stage of nearly all cause types of diabetes mellitus (DM). To date, few safe and effective drugs are available to treat. Peroxisome proliferator-activated receptors (PPARs), comprised of three members: PPAR-α, PPAR-δ and PPAR-γ, play a protective role in the DKD through glycemic control and lipid metabolism, whereas systemic activation of PPAR-γ causes serious side-effects in clinical trials. GFT505 is a dual PPAR-α/δ agonist, and the selectivity against PPAR-γ is still to be improved. Sulfuretin has been shown to suppress the expression of PPAR-γ and improve the pathogenesis of diabetic complications. In this study, by hybridizing the carboxylic acid of GFT505 and the parent nucleus of sulfuretin, we pioneeringly designed and synthetized a series of novel dual PPAR-α/δ agonists, expecting to provide a better benefit/risk ratio for PPARs. Of all the synthesized compounds, compound 12 was identified with highly activity on PPAR-α/δ and higher selectivity against PPAR-γ than that of GFT505 (EC50: hPPAR-α: 0.26 µM vs.0.76 µM; hPPAR-δ: 0.50 µM vs.0.73 µM; hPPAR-γ: 4.22 µM vs.2.79 µM). The molecular docking studies also depicted good binding affinity of compound 12 for PPAR-α and PPAR-δ compared to GFT505. Furthermore, compound 12 exhibited an evidently renoprotective effect on the DKD through inhibiting inflammatory process, which might at least partly via JNK/NF-κB pathways in vivo and in vitro. Overall, compound 12 hold therapeutic promise for DKD.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Hipoglucemiantes/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Masculino , Estructura Molecular , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Estreptozocina , Relación Estructura-Actividad
19.
Eur J Med Chem ; 209: 112932, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131725

RESUMEN

Pentacyclic triterpenes (PTs) are the active ingredients of many medicinal herbs and pharmaceutical formulations, and are well-known for their anti-inflammatory activity. On the other hand, anti-inflammatory effects of AMP-activated protein kinase (AMPK) have recently drawn much attention. In this study, we found that a variety of naturally occurring PTs sapogenins and saponins could stimulate the phosphorylation of AMPK, and identified δ-oleanolic acid (10) as a potent AMPK activator. Based on these findings, 23 saponin derivatives of δ-oleanolic acid were synthesized in order to find more potent anti-inflammatory agents with improved pharmacokinetic properties. The results of cellular assays showed that saponin 29 significantly inhibited LPS-induced secretion of pro-inflammatory factors TNF-α and IL-6 in THP1-derived macrophages. Preliminary mechanistic studies showed that 29 stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). The bioavailability of 29 was significantly improved in comparison with its aglycon. More importantly, 29 showed significant anti-inflammatory and liver-protective effects in LPS/D-GalN-induced fulminant hepatic failure mice. Taken together, PTs saponins hold promise as therapeutic agents for inflammatory diseases.


Asunto(s)
Antiinflamatorios/química , Ácido Oleanólico/química , Triterpenos Pentacíclicos/química , Saponinas/química , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Antiinflamatorios/farmacología , Relación Dosis-Respuesta a Droga , Ácido Glicirrínico/química , Humanos , Interleucina-6/metabolismo , Hígado , Macrófagos/efectos de los fármacos , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos BALB C , Triterpenos Pentacíclicos/farmacología , Fosforilación/efectos de los fármacos , Sapogeninas/química , Saponinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
20.
Transl Oncol ; 13(2): 300-307, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31877462

RESUMEN

Inactivation of the adenomatous polyposis coli (APC) gene is the initiating event in familial adenomatous polyposis (FAP) patients. Up to 90% of FAP patients show intestinal tumors and other extracolonic malignancies including hepatoblastomas, desmoid tumors, and brain cancer. APC mutation mice (ApcMin/+ mice) develop benign polyps in the intestinal tract. It has been reported that small numbers of ApcMin/+ mice develop breast carcinomas. Here, we found that approximately 1.6% of ApcMin/+ mice suffered skin neoplasm. The results demonstrated that these skin tumors are not derived from intestinal adenomas. Sequencing of skin tumors of ApcMin/+ mice and ApcMin/+ mice skin. The data showed that somatic mutations and gene expression levels changed greatly in skin tumors compared to control. Similarly, APC mutation accounts for 27% in the patients of nonmelanoma skin carcinomas in cancer database, and two above genes mutation coexist was observed in all patients. Furthermore, using gene mutation reagent (DMBA)-treated ApcMin/+ mice skin, the skin epithelium and glandular begin hyperplasia in ApcMin/+ mice. These findings revealed that the somatic mutation hit on the germline mutation increase the tumor incidence, suggesting that the somatic mutation should be avoided if the germline mutation exists in one body.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA