Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 111(1): 123-134, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38660750

RESUMEN

In oviparous animals, egg yolk is largely derived from vitellogenin, which is taken up from the maternal circulation by the growing oocytes via the vitellogenin receptor. Recently, a novel member of the lipoprotein receptor superfamily termed low-density lipoprotein receptor-related protein 13 was identified and proposed as a candidate of vitellogenin receptor in oviparous animals. However, the roles of low-density lipoprotein receptor-related protein 13 in vitellogenesis are still poorly defined. Here, we investigated the expression, vitellogenin-binding properties, and function of low-density lipoprotein receptor-related protein 13 in zebrafish. Two different lrp13 genes termed lrp13a and lrp13b were found in zebrafish. Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction revealed both lrp13s to be predominantly expressed in zebrafish ovary, and in situ hybridization detected both lrp13s transcripts in the ooplasm of early stage oocytes. Two yeast hybrid studies showed that among eight vitellogenins of zebrafish, Vtg1, 2, and 3 bind to Lrp13a, while Vtg1, 2, and 5 bind to Lrp13b. We created zebrafish lrp13a and lrp13b mutant lines using CRISPR/Cas9. Knockout of lrp13a leads to a male-biased sex ratio and decreased diameter of embryo yolk, while knockout of lrp13b and double knockout of lrp13a and lrp13b leads to the delay of vitellogenesis, followed by follicular atresia. These phenotypes of mutants can be explained by the disruption of vitellogenesis in the absence of Lrp13s. Taken together, our results indicate that both Lrp13a and Lrp13b can serve as vitellogenin receptors in zebrafish among other vitellogenin receptors that are not yet described.


Asunto(s)
Proteínas del Huevo , Ovario , Vitelogeninas , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Ovario/metabolismo , Vitelogeninas/metabolismo , Vitelogeninas/genética , Proteínas del Huevo/metabolismo , Proteínas del Huevo/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
2.
Microorganisms ; 12(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543490

RESUMEN

Bacillus subtilis, a probiotic bacterium with engineering potential, is widely used for the expression of exogenous proteins. In this study, we utilized the integrative plasmid pDG364 to integrate the hemagglutinin-neuraminidase (HN) gene from Newcastle disease virus (NDV) into the genome of the B. subtilis 168 model strain. We successfully constructed a recombinant B. subtilis strain (designated B. subtilis RH) that displays a truncated HN antigen fragment on the surface of its spores and further evaluated its immunogenic effects in mice. Using ELISA, we quantified the levels of IgG in serum and secretory IgA (sIgA) in intestinal contents. The results revealed that the recombinant B. subtilis RH elicited robust specific mucosal and humoral immune responses in mice. Furthermore, B. subtilis RH demonstrated potential mucosal immune adjuvant properties by fostering the development of immune organs and augmenting the number of lymphocytes in the small intestinal villi. Additionally, the strain significantly upregulated the relative expression of inflammatory cytokines such as IL-1ß, IL-6, IL-10, TNF-α, and IFN-γ in the small intestinal mucosa. In conclusion, the B. subtilis RH strain developed in this study exhibits promising mucosal immunogenic effects. It holds potential as a candidate for an anti-NDV mucosal subunit vaccine and offers a novel preventive strategy for the poultry industry against this disease.

3.
Bioresour Technol ; 395: 130325, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228219

RESUMEN

Herein, three enzymes (cellulase, ß-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.


Asunto(s)
Celulasa , Celulosa , Celulosa/metabolismo , Zea mays/metabolismo , Enzimas Inmovilizadas/metabolismo , Ácidos Polimetacrílicos , Celulasa/metabolismo , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA