Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Opt Express ; 30(13): 22700-22711, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224962

RESUMEN

Localized surface plasmons exhibit promising capabilities in optoelectronic devices. In most cases, the metal nanoparticle arrays are located on interfaces or inside optical cavities. Fano interferences have been observed and explained via the interference between the waves generated by the localized surface plasmon and dielectric interfaces. Conventionally, these Fano interferences are modeled using the modified Fresnel equation. However, certain issues persist in the fundamental physics or in the numerical calculation process. Here, we adopt the equivalent medium theory (Maxwell-Garnett theory, MGT) to calculate and elucidate Fano interferences in different structures, in the region comprising nanoparticle arrays and dielectrics equivalent to a homogeneous layer of media via the mean field theory. Using this method, the Fano interference can be modeled by mixing different materials, i.e., metals and dielectrics in these cases. Furthermore, a multiple-layered equivalent medium theory is proposed to significantly improve the scalability of this simplified numerical method. In other words, this method can be easily extended to nanoparticles with different shapes, sizes, and materials; in addition, it exhibits robust practicability. Compared with the modified Fresnel equation and finite-difference time-domain methods, this MGT-based method can effectively minimize the calculation process, which is beneficial to the prospective application of plasmon photonics.

2.
Phys Chem Chem Phys ; 24(9): 5529-5538, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35172325

RESUMEN

Quantum states and arrangement of valence levels determine most of the electronic and optical properties of semiconductors. Since the crystal field split-off hole (CH) band is the top valence band in high-Al-content AlGaN, TM-polarized optical anisotropy has become the limiting factor for efficient deep-ultraviolet (DUV) light emission. Additional potentials, including on-site Coulomb interaction and orbital state coupling induced by magnesium (Mg) doping, are proposed in this work to regulate the valence level arrangement of AlN/Al0.75Ga0.25N quantum wells (QWs). Diverse responses of valence quantum states |pi〉 (i = x, y, or z) of AlGaN to additional potentials due to different configurations and interactions of orbitals revealed by first-principles simulations are understood in terms of the linear combination of atomic orbital states. A positive charge and large Mg dopant in QWs introduce an additional Coulomb potential and modulate the orbital coupling distance. For the CH band (pz orbital), the Mg-induced Coulomb potential compensates the orbital coupling energy. Meanwhile, the heavy/light hole (HH/LH) bands (px and py orbitals) are elevated by the Mg-induced Coulomb potential. Consequently, HH/LH energy levels are relatively shifted upward and replace the CH level to be the top of the valence band. The inversion of optical anisotropy and enhancement of TE-polarized emission are further confirmed experimentally via spectroscopic ellipsometry.

3.
Opt Express ; 28(4): 5731-5740, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121788

RESUMEN

Enhancement in the light interaction between plasmonic nanoparticles (NPs) and semiconductors is a promising way to enhance the performance of optoelectronic devices beyond the conventional limit. In this work, we demonstrated improved performance of Ga2O3 solar-blind photodetectors (PDs) by the decoration of Rh metal nanoparticles (NPs). Integrated with Rh NPs on oxidized Ga2O3 surface, the resultant device exhibits a reduced dark current of about 10 pA, an obvious enhancement in peak responsivity of 2.76 A/W at around 255 nm, relatively fast response and recovery decay times of 1.76 ms/0.80 ms and thus a high detectivity of ∼1013 Jones. Simultaneously, the photoresponsivity above 290 nm wavelength decreases significantly with improved rejection ratio between ultraviolet A (UVA) and ultraviolet B (UVB) regions, indicative of enhanced wavelength detecting selectivity. The plasmonic resonance features observed in transmittance spectra are consistent with the finite difference time-domain (FDTD) calculations. This agreement indicates that the enhanced electric field strength induced by the localized surface plasmon resonance is responsible for the enhanced absorption and photoresponsivity. The formed localized Schottky barrier at the interface of Rh/Ga2O3 will deplete the carriers at the Ga2O3 surface and lead to the remarkable reduced dark current and thus improve the detectivity. These findings provide direct evidence for Rh plasmonic enhancement in solar-blind spectral region, offering an alternative pathway for the rational design of high-performance solar-blind PDs.

4.
Small ; 11(44): 5932-8, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26426344

RESUMEN

A top-gated MoS2 transistor with 6 nm thick HfO2 is fabricated using an ozone pretreatment. The influence to the top-gated mobility brought about by the deposition of HfO2 is studied statistically, for the first time. The top-gated mobility is suppressed by the deposition of HfO2 , and multilayered samples are less susceptible than monolayer ones.

5.
Small ; 11(2): 208-13, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25115804

RESUMEN

Charge trapping layers are formed from different metallic nanocrystals in MoS2 -based nanocrystal floating gate memory cells in a process compatible with existing fabrication technologies. The memory cells with Au nanocrystals exhibit impressive performance with a large memory window of 10 V, a high program/erase ratio of approximately 10(5) and a long retention time of 10 years.

6.
Nano Lett ; 13(7): 3287-92, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23796312

RESUMEN

"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In2O3 nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , Gases/análisis , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Nanocables/química , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Gases/química , Nanopartículas del Metal/ultraestructura , Microquímica/instrumentación , Nanocables/ultraestructura
7.
Nano Lett ; 12(7): 3596-601, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22694726

RESUMEN

Here we report unique performance transistors based on sol-gel processed indium zinc oxide/single-walled carbon nanotube (SWNT) composite thin films. In the composite, SWNTs provide fast tracks for carrier transport to significantly improve the apparent field effect mobility. Specifically, the composite thin film transistors with SWNT weight concentrations in the range of 0-2 wt % have been investigated with the field effect mobility reaching as high as 140 cm(2)/V·s at 1 wt % SWNTs while maintaining a high on/off ratio ∼10(7). Furthermore, the introduction SWNTs into the composite thin film render excellent mechanical flexibility for flexible electronics. The dynamic loading test presents evidently superior mechanical stability with only 17% variation at a bending radius as small as 700 µm, and the repeated bending test shows only 8% normalized resistance variation after 300 cycles of folding and unfolding, demonstrating enormous improvement over the basic amorphous indium zinc oxide thin film. The results provide an important advance toward high-performance flexible electronics applications.

8.
Nanoscale Res Lett ; 17(1): 13, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032237

RESUMEN

A systematic study was carried out for strain-induced microscale compositional pulling effect on the structural and optical properties of high Al content AlGaN multiple quantum wells (MQWs). Investigations reveal that a large tensile strain is introduced during the epitaxial growth of AlGaN MQWs, due to the grain boundary formation, coalescence and growth. The presence of this tensile strain results in the microscale inhomogeneous compositional pulling and Ga segregation, which is further confirmed by the lower formation enthalpy of Ga atom than Al atom on AlGaN slab using first principle simulations. The strain-induced microscale compositional pulling leads to an asymmetrical feature of emission spectra and local variation in emission energy of AlGaN MQWs. Because of a stronger three-dimensional carrier localization, the area of Ga segregation shows a higher emission efficiency compared with the intrinsic area of MQWs, which is benefit for fabricating efficient AlGaN-based deep-ultraviolet light-emitting diode.

9.
ACS Appl Mater Interfaces ; 13(28): 32856-32864, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34251164

RESUMEN

Plasmonic coupling has been demonstrated to be an effective manipulation strategy for emission enhancement in low-dimensional semiconductor materials. Here, dual-mode plasmonic resonances based on a metal dimer structure were proposed to simultaneously enhance the absorption under short-wavelength excitation and excitons' emission at longer wavelengths for CsPbBr3 perovskite quantum dots (QDs). Large-area metal nanodimer arrays with well-controlled local surface plasmon resonance were facilely fabricated by a simple method combined with metal angular deposition and nanosphere lithography. With the addition of an optimized polymethyl methacrylate spacer, the effective plasmonic coupling and interfacial passivation of QDs were successfully achieved in the hybrid system. As a result, the QD films exhibited a significant and approximately 3.95-fold overall fluorescence enhancement when using blue light excitation, showing the novel advantages of dual-mode plasmonic coupling of semiconductor quantum structures for color conversion applications.

10.
Light Sci Appl ; 10: 129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150202

RESUMEN

As demonstrated during the COVID-19 pandemic, advanced deep ultraviolet (DUV) light sources (200-280 nm), such as AlGaN-based light-emitting diodes (LEDs) show excellence in preventing virus transmission, which further reveals their wide applications from biological, environmental, industrial to medical. However, the relatively low external quantum efficiencies (mostly lower than 10%) strongly restrict their wider or even potential applications, which have been known related to the intrinsic properties of high Al-content AlGaN semiconductor materials and especially their quantum structures. Here, we review recent progress in the development of novel concepts and techniques in AlGaN-based LEDs and summarize the multiple physical fields as a toolkit for effectively controlling and tailoring the crucial properties of nitride quantum structures. In addition, we describe the key challenges for further increasing the efficiency of DUV LEDs and provide an outlook for future developments.

11.
Nanoscale Res Lett ; 16(1): 99, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34081221

RESUMEN

Here we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley-Read-Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density.Synopsis: The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.

12.
Nanotechnology ; 21(1): 015707, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19946168

RESUMEN

A nanoscale non-contact electrical measurement has been developed based on Auger electron spectroscopy. This approach used the specialty of an Auger electron, which is self-generated and free from external influences, to overcome the technical limitations of conventional measurements. The detection of the intrinsic local charge and internal electric field for nanostructured materials was achieved with a resolution below 10 nm. As an example, the electrical properties at the GaN/AlGaN/GaN nanointerfaces were characterized. The concentration of the intrinsic polarization sheet charges embedded in GaN/AlGaN nanointerfacial layers were accurately detected to be -4.4 e nm(-2). The mapping of the internal electric field across the nanointerface revealed the actual energy-band configuration at the early stage of the formation of a two-dimensional electron gas.

13.
Light Sci Appl ; 9: 104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32577220

RESUMEN

AlGaN has attracted considerable interest for ultraviolet (UV) applications. With the development of UV optoelectronic devices, abnormal carrier confinement behaviour has been observed for c-plane-oriented AlGaN quantum wells (QWs) with high Al content. Because of the dispersive crystal field split-off hole band (CH band) composed of p z orbitals, the abnormal confinement becomes the limiting factor for efficient UV light emission. This observation differs from the widely accepted concept that confinement of carriers at the lowest quantum level is more pronounced than that at higher quantum levels, which has been an established conclusion for conventional continuous potential wells. In particular, orientational p z orbitals are sensitive to the confinement direction in line with the conducting direction, which affects the orbital intercoupling. In this work, models of Al0.75Ga0.25N/AlN QWs constructed with variable lattice orientations were used to investigate the orbital intercoupling among atoms between the well and barrier regions. Orbital engineering of QWs was implemented by changing the orbital state confinement, with the well plane inclined from 0° to 90° at a step of 30° (referred to the c plane). The barrier potential and transition rate at the band edge were enhanced through this orbital engineering. The concept of orbital engineering was also demonstrated through the construction of inclined QW planes on semi- and nonpolar planes implemented in microrods with pyramid-shaped tops. The higher emission intensity from the QWs on the nonpolar plane compared with those on the polar plane was confirmed via localized cathodoluminescence (CL) maps.

14.
ACS Appl Mater Interfaces ; 9(12): 10798-10804, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28266830

RESUMEN

Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm2/(V s) and small shifts of threshold voltage (Vth). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the Vth and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

15.
J Phys Chem B ; 110(46): 23211-4, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17107167

RESUMEN

Novel hollow ZnO microstructures and ZnO microberets (ZMBs) with nanowires grown vertically on both the inner and outer surfaces of beret shells were synthesized on Si(100) substrates by simple thermal evaporation of pure zinc powder without any catalyst or template material at a relative low temperature of 490 degrees C. XRD, SAED, and HRTEM patterns show that the nanowires and shells of ZMBs are single-crystalline wurtzite structures. The growth mechanism of ZMBs is discussed in detail. The formation of these hollow microstructures depends on the optimum starting time of air introduction. It is a good way to grow well-aligned nanowires by using a nanoscale rough ZnO surface to realize a "self-catalyzed" vapor-liquid-solid process. The photoluminescence spectrum reveals a strong green emission related to the high surface-to-volume ratio of ZMBs. These types of special hollow high surface area structural ZMBs may find potential applications in functional architectural composite materials, solar cell photoanodes, and nanooptoelectronic devices.


Asunto(s)
Nanotecnología , Nanocables/química , Nanocables/ultraestructura , Óxido de Zinc/química , Catálisis , Frío , Cristalización , Luminiscencia , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Silicio/química , Propiedades de Superficie
16.
ACS Appl Mater Interfaces ; 8(8): 5408-15, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26856932

RESUMEN

Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics.

17.
Nanoscale ; 8(15): 7978-83, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27009830

RESUMEN

Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.

18.
ACS Appl Mater Interfaces ; 8(12): 7862-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977526

RESUMEN

The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.

19.
Nanoscale ; 7(22): 10078-84, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25978618

RESUMEN

In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.

20.
Nanoscale Res Lett ; 9(1): 5, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24393422

RESUMEN

The method of In bilayer pre-deposition and penetrated nitridation had been proposed, which had been proven to have many advantages theoretically. To study the growth behavior of this method experimentally, various pulse times of trimethylindium supply were used to get the optimal indium bilayer controlling by metalorganic vapour phase epitaxy. The results revealed that the InN film quality became better as the thickness of the top indium atomic layers was close to bilayer. A following tuning of nitridation process enhanced the quality of InN film further, which means that a moderate, stable, and slow nitridation process by NH3 flow also plays the key role in growing better-quality InN film. Meanwhile, the biaxial strain of InN film was gradually relaxing when the flatness was increasingly improved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA