RESUMEN
OBJECTIVE: To reveal the possible effects of death-associated protein kinase 1 (DAPK1) on the progression of osteoarthritis (OA) and the potential underlying mechanism. METHODS: : The expression of DAPK1 in OA and normal samples and interleukin (IL)-1ß-stimulated chondrocytes was analyzed by quantitative real-time polymerase chain reaction and Immunoblot assay. Cell viability, proliferation, and apoptosis in DAPK1-knockdown cells stimulated with IL-1ß were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution, 5-ethynyl-2ß-deoxyuridine staining and flow cytometry. The chondrocyte degradation and inflammatory response in IL-1ß-induced chondrocytes were investigated by Immunoblot analysis and enzyme-linked-immunosorbent serologic assay. In addition, the effect of DAPK1 on p38 mitogen-activated protein kinase (MAPK) activation was analyzed by immunoblot assay. RESULTS: : This study revealed that DAPK1 was highly expressed in OA patients and IL-1ß-induced chondrocytes. Down-regulation of DAPK1 enhanced IL-1ß-induced chondrocyte proliferation. DAPK1 knockdown inhibited IL-1ß-induced chondrocyte degradation. In addition, DAPK1 depletion inhibited IL-1ß-induced chondrocyte inflammation. Mechanically, it was revealed that down--regulation of DAPK1 could inhibit the p38 MAPK pathway, and therefore affected progression of OA. CONCLUSION: : DAPK1 knockdown attenuates IL-1ß-induced extracellular matrix degradation and inflammatory response in OA chondrocytes by regulating the p38 MAPK pathway.
Asunto(s)
MicroARNs , Osteoartritis , Humanos , Condrocitos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Cultivadas , Osteoartritis/genética , Osteoartritis/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Transducción de Señal , Apoptosis , Matriz Extracelular/metabolismo , MicroARNs/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/farmacologíaRESUMEN
Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.
Asunto(s)
Pollos/genética , Redes Reguladoras de Genes , Genoma , Folículo Ovárico/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Pollos/clasificación , China , Femenino , Perfilación de la Expresión Génica , Folículo Ovárico/citologíaRESUMEN
Photosynthetic and growth characteristics of Angelica dahurica were studied in order to clarity the relations of photosynthesis, growth and root dry weight, and provide a theoretical basis for its cultivation. Photosynthesis and growth indexes were meas- ured every 25 days. The contents of chlorophyll a, b, a + b, soluble protein and the activities of Hill reaction, Ca(2+)-ATPase, Mg(2+)-ATPase had an increasing trend; They had the highest value in leaf high-speed growth period. Then, they were decreased in root high- speed growth period. The root dry weight showed negative corelation with photosynthetic characteristics indexes except stomatal con- ductance, however, the negative corelation only from net photosynthetic rate and Ca(2+)-ATPase were significant. The vegetative growth period of spring sowing A. dahuricia was divided into three phases: seedling period, leaf high-speed growth period and root high-speed growth period. The root dry weight showed a significantly positive corelation with the root diameter, leaf dry weight, shoot dry weight, aboveground dry weight. There was the competitive relation between aboveground and underground, so underground growth could be es- timated from leaf area and shoot dimeter.
Asunto(s)
Angelica/crecimiento & desarrollo , Angelica/metabolismo , Fotosíntesis , Adenosina Trifosfatasas/metabolismo , Angelica/enzimología , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Estaciones del AñoRESUMEN
A compact micro-optical interferometer is presented that combines two optical 90° hybrids or, alternatively, four delay interferometers into one interferometer structure sharing one tunable delay line. The interferometer can function as a frontend of either a coherent receiver or of a self-coherent receiver by adjusting the waveplates and the delay line. We built a prototype on a LIGA bench. We characterized the device and demonstrated its functionality by successful reception of a 112 Gbit/s signal.
RESUMEN
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
RESUMEN
Self-coherent detection with interferometric field reconstruction aims at retrieving the complex-valued optical field (amplitude and phase) by digitally processing delay interferometer (DI) measurements, in order to realize a differential direct detection receiver with capabilities akin to that of a fully coherent receiver with polarization multiplexing, albeit without requiring a local oscillator laser in the receiver. Here we introduce a novel digital recursive algorithm capable of accurately reconstructing the optical complex field (both amplitude and phase) solely from the quadrature DI outputs, eliminating the AM photo-detector branch. We analyze a key impairment namely the accumulation of errors and fluctuations in the reconstructed amplitude and phase due to ADC quantization noise, recirculating in the recursion. We introduce signal processing measures to effectively mitigate this noise impairment leading to a potentially practical self-coherent receiver, demonstrated in this paper for a single polarization. We also investigate the range of applicability of self-coherent detection concluding that it is most suitable to relatively low baud-rate systems such as passive optical networks, for which application the self-coherent receiver outperforms the coherent homodyne receiver due to its improved laser noise tolerance, obtained due to the removal of the optical local oscillator.
RESUMEN
A self-coherent receiver capable of demultiplexing PolMUX-signals without an external polarization controller is presented. Training sequences are introduced to estimate the polarization rotation, and a decision feedback recursive algorithm mitigates the random walk of the recovered field. The concept is tested for a PolMUX-DQPSK modulation format where one polarization carries a normal DQPSK signal while the other polarization is encoded as a progressive phase-shift DQPSK signal. An experimental demonstration of the scheme for a 112 Gbit/s PolMUX-DQPSK signal is presented.
RESUMEN
Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.
RESUMEN
Ulva torta (Mertens) Trevisan, 1841 was a global temperate widespread species. Green tide blooms caused by the green algae of the Ulva species occurred frequently in China. As a newly discovered species in the green tide bloom area, it was necessary to explore the relationship between U. torta and other green algae of the Ulva species. The complete chloroplast genome of U. torta was 105,423 bp in size. A total of 100 genes were annotated in the genome, containing 70 protein-coding genes, 27 transfer RNA (tRNA) genes, and three rRNA genes. The chloroplast genome had high AT content (74.76%). Phylogenetic analysis showed U. torta was clustered with Ulva meridionalis. This work could be useful for studying the evolution and genetic diversity of U. torta.
RESUMEN
Macroalgal blooms have become a serious threat to public health, fisheries, ecosystems, and global economies. Since 2007, in the Yellow Sea, China, Ulva green tides have occurred for 15 consecutive years. However, effective control methods are limited. Ulva prolifera attached to Neopyropia aquaculture rafts are believed to be the main source of blooms, therefore eliminating Ulva from rafts could effectively prevent and control blooms. We investigated this phenomenon and showed that macroalgae germination was significantly inhibited by dried Neopyropia yezoensis at concentrations of 1.2, 2.4, and 4.8 g DW-1. Also, the inhibitory effects of dried N. yezoensis toward U. prolifera gametes at 2.4 and 4.8 g DW-1 were >90% at day 21. N. yezoensis culture filtrates and thalli were also used to determine dose-dependent inhibition effects on U. prolifera gamete germination. Both were potent and significantly inhibited germination at 1.75-7 g FW-1; the inhibitory effect 7 g FW-1 was >90% at day 21. As N. yezoensis thalli exhibited high inhibitory effects in laboratory experiments, we also performed field studies. N. yezoensis on ropes displayed high inhibitory effects on Ulva attachment and growth. Thus N. yezoensis powder, culture filtrates, and thalli displayed strong inhibitory effects on U. prolifera gametes, suggesting N. yezoensis attachment to ropes could be used to control green tides at the source.
Asunto(s)
Algas Marinas , Ulva , Acuicultura , Ecosistema , Eutrofización , Algas Marinas/fisiologíaRESUMEN
A free-space optical delay interferometer (DI) featuring a continuously tunable time delay, polarization insensitive operation with high extinction ratios and accurate phase and time delay monitoring scheme is reported. The polarization dependence is actively mitigated by adjusting a birefringent liquid-crystal device. The DI has been tested for reception of D(m)PSK signals.
RESUMEN
It is necessary to elucidate its growth mechanism in order to prevent and control the further spread of Flaveria bidentis, an invasive plant in China. The effects of shading (shading rate of 0, 50% and 80%, respectively) and planting pattern (single cropping of F. bidentis, single cropping of Chenopodium album and their intercropping) on germination rate, fluorescence characteristics and growth characteristics of the two plants were investigated. The results showed that moderate shading contributed to emergence rate, but emergence rate of F. bidentis was not uniform, which was one of important factors as a stronger invader. With the increasing light intensity, net photosynthetic rate (Pn), photochemical quenching (qP), electron transport rate of PS II (ETR), quantum yield of PS II (Y), non-photochemical quenching (qN), water use efficiency (WUE), shoot bio-mass rate (SMR), crown width (CW) and dry biomass (DM) increased, specific leaf area (SLA) decreased, LMR of F. bidentis significantly increased, LMR of C. album changed insignificantly, and the increment of DM of F. bidentis was higher than that of C. album. In 80% shade treatment, Pn and DM of F. bidentis were lower than those of C. album. In natural light treatment, Pn, qN, WUE and relative competitive index (RCI) were the highest, CW and DM of intercropped F. bidentis and Pn, Y of C. album were significantly lower than that of the respective single treatment. F. bidentis had higher light saturation point (LSP) and light compensation point (LCP). In conclusion, the shade-tolerant ability of F. bidentis was weaker than that of C. album, but it was reversed in natural light treatment. The two plants adapted to the weak light in 80% shade treatment by increasing SLA and decreasing LMR. F. bidentis improved competition under natural light by increasing SMR and decreasing CW.
Asunto(s)
Chenopodium album/crecimiento & desarrollo , Flaveria/fisiología , Luz , Fotosíntesis , Biomasa , China , Fluorescencia , Especies Introducidas , Hojas de la PlantaRESUMEN
Optical frequency combs have the potential to revolutionize terabit communications1. Generation of Kerr combs in nonlinear microresonators2 represents a particularly promising option3 enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise4-6, which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise4,7-9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers.