Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064779

RESUMEN

The simple lens computational imaging method provides an alternative way to achieve high-quality photography. It simplifies the design of the optical-front-end to a single-convex-lens and delivers the correction of optical aberration to a dedicated computational restoring algorithm. Traditional single-convex-lens image restoration is based on optimization theory, which has some shortcomings in efficiency and efficacy. In this paper, we propose a novel Recursive Residual Groups network under Generative Adversarial Network framework (RRG-GAN) to generate a clear image from the aberrations-degraded blurry image. The RRG-GAN network includes dual attention module, selective kernel network module, and residual resizing module to make it more suitable for the non-uniform deblurring task. To validate the evaluation algorithm, we collect sharp/aberration-degraded datasets by CODE V simulation. To test the practical application performance, we built a display-capture lab setup and reconstruct a manual registering dataset. Relevant experimental comparisons and actual tests verify the effectiveness of our proposed method.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3677-3694, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35648876

RESUMEN

Domain Adaptive Object Detection (DAOD) focuses on improving the generalization ability of object detectors via knowledge transfer. Recent advances in DAOD strive to change the emphasis of the adaptation process from global to local in virtue of fine-grained feature alignment methods. However, both the global and local alignment approaches fail to capture the topological relations among different foreground objects as the explicit dependencies and interactions between and within domains are neglected. In this case, only seeking one-vs-one alignment does not necessarily ensure the precise knowledge transfer. Moreover, conventional alignment-based approaches may be vulnerable to catastrophic overfitting regarding those less transferable regions (e.g., backgrounds) due to the accumulation of inaccurate localization results in the target domain. To remedy these issues, we first formulate DAOD as an open-set domain adaptation problem, in which the foregrounds and backgrounds are seen as the "known classes" and "unknown class" respectively. Accordingly, we propose a new and general framework for DAOD, named Foreground-aware Graph-based Relational Reasoning (FGRR), which incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations on both pixel and semantic spaces, thereby endowing the DAOD model with the capability of relational reasoning beyond the popular alignment-based paradigm. FGRR first identifies the foreground pixels and regions by searching reliable correspondence and cross-domain similarity regularization respectively. The inter-domain visual and semantic correlations are hierarchically modeled via bipartite graph structures, and the intra-domain relations are encoded via graph attention mechanisms. Through message-passing, each node aggregates semantic and contextual information from the same and opposite domain to substantially enhance its expressive power. Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art performance on four DAOD benchmarks.

3.
IEEE J Biomed Health Inform ; 27(1): 386-396, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350857

RESUMEN

Automatic and accurate differentiation of liver lesions from multi-phase computed tomography imaging is critical for the early detection of liver cancer. Multi-phase data can provide more diagnostic information than single-phase data, and the effective use of multi-phase data can significantly improve diagnostic accuracy. Current fusion methods usually fuse multi-phase information at the image level or feature level, ignoring the specificity of each modality, therefore, the information integration capacity is always limited. In this paper, we propose a Knowledge-guided framework, named MCCNet, which adaptively integrates multi-phase liver lesion information from three different stages to fully utilize and fuse multi-phase liver information. Specifically, 1) a multi-phase self-attention module was designed to adaptively combine and integrate complementary information from three phases using multi-level phase features; 2) a cross-feature interaction module was proposed to further integrate multi-phase fine-grained features from a global perspective; 3) a cross-lesion correlation module was proposed for the first time to imitate the clinical diagnosis process by exploiting inter-lesion correlation in the same patient. By integrating the above three modules into a 3D backbone, we constructed a lesion classification network. The proposed lesion classification network was validated on an in-house dataset containing 3,683 lesions from 2,333 patients in 9 hospitals. Extensive experimental results and evaluations on real-world clinical applications demonstrate the effectiveness of the proposed modules in exploiting and fusing multi-phase information.


Asunto(s)
Hospitales , Neoplasias Hepáticas , Humanos , Conocimiento , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
4.
Med Image Anal ; 90: 102938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806020

RESUMEN

Glaucoma is a chronic neuro-degenerative condition that is one of the world's leading causes of irreversible but preventable blindness. The blindness is generally caused by the lack of timely detection and treatment. Early screening is thus essential for early treatment to preserve vision and maintain life quality. Colour fundus photography and Optical Coherence Tomography (OCT) are the two most cost-effective tools for glaucoma screening. Both imaging modalities have prominent biomarkers to indicate glaucoma suspects, such as the vertical cup-to-disc ratio (vCDR) on fundus images and retinal nerve fiber layer (RNFL) thickness on OCT volume. In clinical practice, it is often recommended to take both of the screenings for a more accurate and reliable diagnosis. However, although numerous algorithms are proposed based on fundus images or OCT volumes for the automated glaucoma detection, there are few methods that leverage both of the modalities to achieve the target. To fulfil the research gap, we set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge to encourage the development of fundus & OCT-based glaucoma grading. The primary task of the challenge is to grade glaucoma from both the 2D fundus images and 3D OCT scanning volumes. As part of GAMMA, we have publicly released a glaucoma annotated dataset with both 2D fundus colour photography and 3D OCT volumes, which is the first multi-modality dataset for machine learning based glaucoma grading. In addition, an evaluation framework is also established to evaluate the performance of the submitted methods. During the challenge, 1272 results were submitted, and finally, ten best performing teams were selected for the final stage. We analyse their results and summarize their methods in the paper. Since all the teams submitted their source code in the challenge, we conducted a detailed ablation study to verify the effectiveness of the particular modules proposed. Finally, we identify the proposed techniques and strategies that could be of practical value for the clinical diagnosis of glaucoma. As the first in-depth study of fundus & OCT multi-modality glaucoma grading, we believe the GAMMA Challenge will serve as an essential guideline and benchmark for future research.


Asunto(s)
Glaucoma , Humanos , Glaucoma/diagnóstico por imagen , Retina , Fondo de Ojo , Técnicas de Diagnóstico Oftalmológico , Ceguera , Tomografía de Coherencia Óptica/métodos
5.
Med Image Anal ; 66: 101798, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896781

RESUMEN

Angle closure glaucoma (ACG) is a more aggressive disease than open-angle glaucoma, where the abnormal anatomical structures of the anterior chamber angle (ACA) may cause an elevated intraocular pressure and gradually lead to glaucomatous optic neuropathy and eventually to visual impairment and blindness. Anterior Segment Optical Coherence Tomography (AS-OCT) imaging provides a fast and contactless way to discriminate angle closure from open angle. Although many medical image analysis algorithms have been developed for glaucoma diagnosis, only a few studies have focused on AS-OCT imaging. In particular, there is no public AS-OCT dataset available for evaluating the existing methods in a uniform way, which limits progress in the development of automated techniques for angle closure detection and assessment. To address this, we organized the Angle closure Glaucoma Evaluation challenge (AGE), held in conjunction with MICCAI 2019. The AGE challenge consisted of two tasks: scleral spur localization and angle closure classification. For this challenge, we released a large dataset of 4800 annotated AS-OCT images from 199 patients, and also proposed an evaluation framework to benchmark and compare different models. During the AGE challenge, over 200 teams registered online, and more than 1100 results were submitted for online evaluation. Finally, eight teams participated in the onsite challenge. In this paper, we summarize these eight onsite challenge methods and analyze their corresponding results for the two tasks. We further discuss limitations and future directions. In the AGE challenge, the top-performing approach had an average Euclidean Distance of 10 pixels (10 µm) in scleral spur localization, while in the task of angle closure classification, all the algorithms achieved satisfactory performances, with two best obtaining an accuracy rate of 100%. These artificial intelligence techniques have the potential to promote new developments in AS-OCT image analysis and image-based angle closure glaucoma assessment in particular.


Asunto(s)
Glaucoma de Ángulo Cerrado , Glaucoma de Ángulo Abierto , Segmento Anterior del Ojo/diagnóstico por imagen , Inteligencia Artificial , Glaucoma de Ángulo Cerrado/diagnóstico por imagen , Humanos , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA