Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.096
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 42(21): e114220, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37691541

RESUMEN

DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.


Asunto(s)
Giberelinas , Oryza , Giberelinas/metabolismo , Giberelinas/farmacología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expresión Génica , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Proc Natl Acad Sci U S A ; 121(34): e2317944121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145937

RESUMEN

Electrical triggering of a metal-insulator transition (MIT) often results in the formation of characteristic spatial patterns such as a metallic filament percolating through an insulating matrix or an insulating barrier splitting a conducting matrix. When MIT triggering is driven by electrothermal effects, the temperature of the filament or barrier can be substantially higher than the rest of the material. Using X-ray microdiffraction and dark-field X-ray microscopy, we show that electrothermal MIT triggering leads to the development of an inhomogeneous strain profile across the switching device, even when the material does not undergo a pronounced, discontinuous structural transition coinciding with the MIT. Diffraction measurements further reveal evidence of unique features associated with MIT triggering including lattice distortions, tilting, and twinning, which indicate structural nonuniformity of both low- and high-resistance regions inside the switching device. Such lattice deformations do not occur under equilibrium, zero-voltage conditions, highlighting the qualitative difference between states achieved through increasing temperature and applying voltage in nonlinear electrothermal materials. Electrically induced strain, lattice distortions, and twinning could have important contributions in the MIT triggering process and drive the material into nonequilibrium states, providing an unconventional pathway to explore the phase space in strongly correlated electronic systems.

3.
Pharmacol Rev ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406506

RESUMEN

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. The two existing isoforms Arg1 and Arg2 show different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell-type-specific, species-specific, and profoundly different in mice and humans. The main differences were found in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of L-ornithine, polyamine, and proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginase, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. Significance Statement The review emphasizes the need for further research to deepen our understanding of the regulation of Arg1 and Arg 2 in different cell types under consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This could lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infection diseases and cancer.

4.
Plant Cell ; 34(8): 2969-2988, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35512211

RESUMEN

Polycomb repressive complex 2 (PRC2), which mediates the deposition of H3K27me3 histone marks, is important for developmental decisions in animals and plants. In the shoot apical meristem (SAM), Three Amino acid Loop Extension family KNOTTED-LIKE HOMEOBOX /BEL-like (KNOX/BELL) transcription factors are key regulators of meristem cell pluripotency and differentiation. Here, we identified a PRC2-associated coiled-coil protein (PACP) that interacts with KNOX/BELL transcription factors in rice (Oryza sativa) shoot apex cells. A loss-of-function mutation of PACP resulted in differential gene expression similar to that observed in PRC2 gene knockdown plants, reduced H3K27me3 levels, and reduced genome-wide binding of the PRC2 core component EMF2b. The genomic binding of PACP displayed a similar distribution pattern to EMF2b, and genomic regions with high PACP- and EMF2b-binding signals were marked by high levels of H3K27me3. We show that PACP is required for the repression of cell differentiation-promoting genes targeted by a rice KNOX1 protein in the SAM. PACP is involved in the recruitment or stabilization of PRC2 to genes targeted by KNOX/BELL transcription factors to maintain H3K27me3 and gene repression in dividing cells of the shoot apex. Our results provide insight into PRC2-mediated maintenance of H3K27me3 and the mechanism by which KNOX/BELL proteins regulate SAM development.


Asunto(s)
Oryza , Complejo Represivo Polycomb 2 , Animales , Diferenciación Celular/genética , Genes Homeobox , Histonas/genética , Histonas/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
5.
Nucleic Acids Res ; 51(19): 10795-10807, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37757856

RESUMEN

As CRISPR technology is promoted to more fine-divided molecular biology applications, its inherent performance finds it increasingly difficult to cope with diverse needs in these different fields, and how to more accurately control the performance has become a key issue to develop CRISPR technology to a new stage. Herein, we propose a CRISPR/Cas12a regulation strategy based on the powerful programmability of nucleic acid nanotechnology. Unlike previous difficult and rigid regulation of core components Cas nuclease and crRNA, only a simple switch of different external RNA accessories is required to change the reaction kinetics or thermodynamics, thereby finely and almost steplessly regulating multi-performance of CRISPR/Cas12a including activity, speed, specificity, compatibility, programmability and sensitivity. In particular, the significantly improved specificity is expected to mark advance the accuracy of molecular detection and the safety of gene editing. In addition, this strategy was applied to regulate the delayed activation of Cas12a, overcoming the compatibility problem of the one-pot assay without any physical separation or external stimulation, and demonstrating great potential for fine-grained control of CRISPR. This simple but powerful CRISPR regulation strategy without any component modification has pioneering flexibility and versatility, and will unlock the potential for deeper applications of CRISPR technology in many finely divided fields.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , ARN/genética , ARN Guía de Sistemas CRISPR-Cas
6.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211606

RESUMEN

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
7.
Med Res Rev ; 44(3): 1189-1220, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38178560

RESUMEN

Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.


Asunto(s)
Infecciones por VIH , Receptores CXCR4 , Humanos , Infecciones por VIH/tratamiento farmacológico , Quimiocina CXCL12 , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Descubrimiento de Drogas
8.
Immunology ; 172(2): 295-312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453210

RESUMEN

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Asunto(s)
Epimedium , Flavonoides , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Flavonoides/farmacología , Epimedium/química , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Células THP-1 , Proteínas Serina-Treonina Quinasas/metabolismo , Antiinflamatorios/farmacología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos
9.
Anal Chem ; 96(41): 16434-16442, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39363423

RESUMEN

Timely detection of reactive oxygen species (ROS) accumulated during inflammation is essential for an early disease diagnosis. Compared to fluorescence probes with limited sensitivity and accuracy, chemiluminescence (CL) imaging offers the potential for highly sensitive molecular visualization of ROS by minimizing background interferences. However, the development of bright and easily manufacturable CL probes for ROS imaging remains challenging. In this study, a novel chemiluminescent nanoprobe named Cu-Lum@NPs for ROS imaging in inflammation was synthesized by using a one-step solvothermal method. The Cu-Lum@NPs, which are composed of coordination polymers containing copper ions and luminol (Lum), demonstrate intrinsic peroxidase-like activity that relies on Cu(I) as the catalytic active center to initiate the Fenton reaction. This catalytic process facilitates the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) and superoxide anion radicals (O2•-), leading to the oxidation of Lum and inducing strong luminescence. Cu-Lum@NPs, displaying nanozyme characteristics, were observed to accelerate and enhance the ROS-responsive luminescence (10-1600-fold in solution and over 100-fold in neutrophils) and notably extend persistent luminescence. The Cu-Lum@NPs allowed for CL imaging of endogenous ROS in living cells and animals with an outstanding signal-to-noise ratio exceeding 96 and facilitated oxidative damage luminescence imaging for tissue-specific detection. The study presents Cu-Lum@NPs, a highly sensitive and easily manufacturable chemiluminescent nanoprobe for ROS imaging both in vitro and in vivo, exhibiting enhanced luminescence and prolonged persistence for ROS-related disease detection.


Asunto(s)
Cobre , Mediciones Luminiscentes , Luminol , Polímeros , Especies Reactivas de Oxígeno , Luminol/química , Cobre/química , Animales , Ratones , Humanos , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Estrés Oxidativo , Imagen Óptica , Peróxido de Hidrógeno/química
10.
Small ; 20(16): e2308806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010127

RESUMEN

Developing high-performance infrared (IR) nonlinear optical (NLO) materials is urgent but challenging due to the competition between NLO coefficient and bandgap in one compound. Herein, by coupling NLO-active [BS3] planar units and halide-centered polycations, six new metal thioborate halides ABa3B2S6X (A = Rb, Cs; X = Cl, Br, I) composed of zero-dimensional [XBamRbn/Csn] polycations and [BS3] units, belonging to a new A I B 3 II C 2 III Q 6 VI X VII ${\mathrm{A}}^{\mathrm{I}}{\mathrm{B}}_{3}^{\mathrm{II}}{\mathrm{C}}_{2}^{\mathrm{III}}{\mathrm{Q}}_{6}^{\mathrm{VI}}{\mathrm{X}}^{\mathrm{VII}}$ family, are rationally designed and fabricated. The compounds show an interesting structural transition from Pbcn (ABa3B2S6Cl) to Cmc21 (ABa3B2S6Br and ABa3B2S6I) driven by the clamping effect of polycationic frameworks. ABa3B2S6Br and ABa3B2S6I are the first series metal thioborate halide IR NLO materials, and the introduction of [BS3] unit effectively widens the bandgap of planar unit-constructed chalcogenides. ABa3B2S6Br and ABa3B2S6I, exhibiting wide bandgaps (3.55-3.60 eV), high laser-induced damage thresholds (≈ 6 × AgGaS2), and strong SHG effects (0.5-0.6 × AgGaS2) with phase-matching behaviors, are the promising IR NLO candidates for high-power laser applications. The results enrich the chemical and structural diversity of boron chemistry and give some insights into the design of new IR NLO materials with planar units.

11.
Small ; : e2405574, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39391961

RESUMEN

The Gate-All-Around Field-Effect Transistor (GAAFET) is proposed as a successor to Fin Field-Effect Transistor (FinFET) technology to increase channel length and improve the device performance. The GAAFET features a complex multilayer structure, which complicates the manufacturing process. One of the most critical steps in GAAFET fabrication is the selective lateral etching of the SiGe layers, essential for forming the inner-spacer. Industry commonly encounters a non-uniform etching profile during this step. In this paper, a continuous two-step dry etching model is proposed to investigate the mechanism behind the formation of the non-uniform profiles. The model consists of four modules: anisotropic etching simulation, Ge atom diffusion simulation, Si/SiGe etch selectivity calculation and SiGe selective etching simulation. By calibrating and verifying this model with experimental data, the edge rounding and gradient etching rates along the sidewall surface are successfully simulated. Based on further examination of the influence of chamber pressure on the profile using this model, the inner-spacer shape is improved experimentally by appropriately reducing the chamber pressure. This work aims to provide valuable insights for etching process recipes in advanced GAAFETs manufacturing.

12.
Small ; 20(25): e2308724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229571

RESUMEN

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

13.
Small ; : e2404149, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440669

RESUMEN

Luminescent solar concentrators (LSC) have the potential application in building integrated photovoltaic (BIPV). 0D tin-based perovskites are a promising embedding phosphor in LSC due to the large Stokes shift and high photoluminescence quantum yield. But the instability and uncontrollable crystal growth are severe limiting their successful utilization in device fabrication. To tackle these issues, double-shell encapsulated configurations are presented, soft ligands of hypophosphorous acid and hard-shell of hollow mesoporous silica are simultaneously suppressing the oxidation of Sn2+ and restricting crystal growth within nano-matrix. The stable phosphor is subsequently embedded into LSC for harvesting solar energy and the resulting output power efficiently drives the combined electrochromic glass under natural light. These fabricated devices also offer the self-adaptable switch on/off functionality to regulate light absorption with variable solar irradiation intensity in real time. This approach is anticipated to open new avenues for utilizing lead-free perovskite nanomaterials in self-powered smart windows for BIPV.

14.
J Transl Med ; 22(1): 973, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468595

RESUMEN

BACKGROUND: Cancer immunotherapy, particularly immune checkpoint inhibitors (ICBs) such as anti-PD-1 antibodies, has revolutionised cancer treatment, although response rates vary among patients. Previous studies have demonstrated that caerin 1.1 and 1.9, host-defence peptides from the Australian tree frog, enhance the effectiveness of anti-PD-1 and therapeutic vaccines in a murine TC-1 model by activating tumour-associated macrophages intratumorally. METHODS: We employed a murine B16 melanoma model to investigate the therapeutic potential of caerin 1.1 and 1.9 in combination with anti-CD47 and a therapeutic vaccine (triple therapy, TT). Tumour growth of caerin-injected primary tumours and distant metastatic tumours was assessed, and survival analysis conducted. Single-cell RNA sequencing (scRNAseq) of CD45+ cells isolated from distant tumours was performed to elucidate changes in the tumour microenvironment induced by TT. RESULTS: The TT treatment significantly reduced tumour volumes on the treated side compared to untreated and control groups, with notable effects observed by Day 21. Survival analysis indicated extended survival in mice receiving TT, both on the treated and distant sides. scRNAseq revealed a notable expansion of conventional type 1 dendritic cells (cDC1s) and CD4+CD8+ T cells in the TT group. Tumour-associated macrophages in the TT group shifted toward a more immune-responsive M1 phenotype, with enhanced communication observed between cDC1s and CD8+ and CD4+CD25+ T cells. Additionally, TT downregulated M2-like macrophage marker genes, particularly in MHCIIhi and tissue-resident macrophages, suppressing Cd68 and Arg1 expression across all macrophage types. Differential gene expression analysis highlighted pathway alterations, including upregulation of oxidative phosphorylation and MYC target V1 in Arg1hi macrophages, and activation of pro-inflammatory pathways in MHCIIhi and tissue-resident macrophages. CONCLUSION: Our findings suggest that caerin 1.1 and 1.9, combined with immunotherapy, effectively modulate the tumour microenvironment in primary and secondary tumours, leading to reduced tumour growth and enhanced systemic immunity. Further investigation into these mechanisms could pave the way for improved combination therapies in advanced melanoma treatment.


Asunto(s)
Melanoma Experimental , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Melanoma Experimental/patología , Melanoma Experimental/inmunología , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Reprogramación Celular/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Péptidos/farmacología , Línea Celular Tumoral , Antígeno CD47/metabolismo
15.
Opt Express ; 32(4): 6266-6276, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439334

RESUMEN

Augmented reality (AR) display, as a next-generation innovative technology, is revolutionizing the ways of perceiving and communicating by overlaying virtual images onto real-world scenes. However, the current AR devices are often bulky and cumbersome, posing challenges for long-term wearability. Metasurfaces have flexible capabilities of manipulating light waves at subwavelength scales, making them as ideal candidates for replacing traditional optical elements in AR display devices. In this work, we propose and fabricate what we believe is a novel reflective polarization multiplexing gradient metasurface based on propagation phase principle to replace the optical combiner element in traditional AR display devices. Our designed metasurface exhibits different polarization modulations for reflected and transmitted light, enabling efficient deflection of reflected light while minimizing the impact on transmitted light. This work reveals the significant potential of metasurfaces in next-generation optical display systems and provides a reliable theoretical foundation for future integrated waveguide schemes, driving the development of next-generation optical display products towards lightweight and comfortable.

16.
Plant Cell ; 33(12): 3721-3742, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34498077

RESUMEN

Plant SNF1-Related Kinase1 (SnRK1) is an evolutionarily conserved energy-sensing protein kinase that orchestrates transcriptional networks to maintain cellular energy homeostasis when energy supplies become limited. However, the mechanism by which SnRK1 regulates this gene expression switch to gauge cellular energy status remains largely unclear. In this work, we show that the rice histone H3K27me3 demethylase JMJ705 is required for low energy stress tolerance in rice plants. The genetic inactivation of JMJ705 resulted in similar effects as those of the rice snrk1 mutant on the transcriptome, which impairs not only the promotion of the low energy stress-triggered transcriptional program but also the repression of the program under an energy-sufficient state. We show that the α-subunit of OsSnRK1 interacts with and phosphorylates JMJ705 to stimulate its H3K27me3 demethylase activity. Further analysis revealed that JMJ705 directly targets a set of low energy stress-responsive transcription factor genes. These results uncover the chromatin mechanism of SnRK1-regulated gene expression in both energy-sufficient and -limited states in plants and suggest that JMJ705 functions as an upstream regulator of the SnRK1α-controlled transcriptional network.


Asunto(s)
Metabolismo Energético , Homeostasis/genética , Oryza/fisiología , Proteínas de Plantas/genética , Transcripción Genética/fisiología , Oryza/genética
17.
Opt Lett ; 49(1): 165-168, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134178

RESUMEN

Near-unity circular dichroism (CD) with high quality (Q)-factors has wide applications in chiral lasers, modulators, detectors, etc. In this work, we firstly suggest a feasible approach to realize near-unity CD (∼0.94) with a high Q-factor (>2 × 104) supported by a toroidal dipole (TD) empowered superchiral quasi-bound states in the continuum (BICs) metasurface. Based on intensity, excellent electrical switching is achieved by adjusting the Fermi energy of the graphene on the metasurface. High refractive index sensitivity (136.2 nm/RIU) and figure of merit (1135 RIU-1) demonstrate its superior chiral sensing detection performance. Moreover, the near-unity CD displays a large robustness to the asymmetry offset. Our work paves a feasible avenue for well-designed superchiral quasi-BIC metasurfaces with high Q-factor near-unity CD for chiral applications in electrically tunable modulators, switches, sensors, etc.

18.
Opt Lett ; 49(17): 4831-4834, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207975

RESUMEN

Heterogeneous metamaterials containing excitonic materials provide an ideal platform for strong exciton-photon coupling. In this Letter, we theoretically demonstrate four strong couplings in a heterogeneous metamaterial consisting of a TiO2 grating standing on a perovskite-WS2-perovskite waveguide layer by tuning the structural sizes. The quasi-bound state in the continuum (qBIC) and the guided mode resonance (GMR) both strongly coupled with the excitons of both perovskite and WS2 under oblique incident illumination, resulting in four large Rabi splittings of 177.32, 187.53, 406.25, and 435.09 meV via a reasonable combination of oscillator strengths of perovskite and WS2. Double strong coupling behaviors are also achieved when the grating period equals 222 nm with an incident light angle of 19.3°. Moreover, double ultrastrong coupling can even be realized by the GMR and qBIC respectively interacting with the exciton of WS2 when its oscillator strength reaches a certain value. Our work paves an effective avenue to realizing strong coupling and even ultrastrong coupling between multiple excitons and multiple optical modes.

19.
Chemistry ; : e202403185, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340304

RESUMEN

With high specific surface area, excellent polysulfide conversion activity, and fast electron/ion transfer at the interface, MXene-derived heterostructures can be employed as catalysts for lithium-sulfur (Li-S) batteries to accelerate sulfur redox kinetics and suppress shuttle effect. However, the preparation of MXene-derived heterostructures often requires high-temperature reactions, which can easily lead to the oxidation of MXene and sacrifice the electrical conductivity. Herein, a catalytic two-dimensional heterostructure (ZnS/MXene) was successfully synthesized via a mild method. The MXene skeleton retains the original nanosheet structure without oxidation. The in situ-grown ZnS nanospheres prevent the restacking of MXene nanosheets, which not only increases the active sites, but also guarantees channels for the fast passage of lithium ions. The interfacial built-in electric field further promotes electron/ion migration, thereby expediting the polysulfide conversion and suppressing the shuttle effect. Consequently, the batteries using ZnS/MXene modified separators exhibit a high initial discharge capacity of 1230 mAh g-1 at 0.1 C and a low decaying rate of 0.082% per cycle after 500 cycles at 0.5 C. This work offers a reference for the fabrication of MXene-based heterostructure in Li-S batteries.

20.
FASEB J ; 37(12): e23290, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921465

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease where abnormal amyloidogenic processing of amyloid-ß precursor protein (APP) occurs and has been linked to neuronal dysfunction. Hypometabolism of glucose in the brain can lead to synaptic loss and neuronal death, which in turn exacerbates energy deficiency and amyloid-ß peptide (Aß) accumulation. Lactate produced by anaerobic glycolysis serves as an energy substrate supporting neuronal function and facilitating neuronal repair. Vestigial-like family member 4 (VGLL4) has been recognized as a key regulator of the hypoxia-sensing pathway. However, the role of VGLL4 in AD remains unexplored. Here, we reported that the expression of VGLL4 protein was significantly decreased in the brain tissue of AD model mice and AD model cells. We further found that overexpression of VGLL4 reduced APP amyloidogenic processing and ameliorated neuronal synaptic damage. Notably, we identified a compromised hypoxia-sensitive capability of LDHA regulated by VGLL4 in the context of AD. Upregulation of VGLL4 increased the response of LDHA to hypoxia and enhanced the expression levels of LDHA and lactate by inhibiting the ubiquitination and degradation of LDHA. Furthermore, the inhibition of lactate production by using sodium oxamate, an inhibitor of LDHA, suppressed the neuroprotective function of VGLL4 by increasing APP amyloidogenic processing. Taken together, our findings demonstrate that VGLL4 exerts a neuroprotective effect by upregulating LDHA expression and consequently promoting lactate production. Thus, this study suggests that VGLL4 may be a novel player involved in molecular mechanisms relevant for ameliorating neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ácido Láctico , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipoxia , Ratones Transgénicos , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA