RESUMEN
Colour centres in diamond have emerged as a leading solid-state platform for advancing quantum technologies, satisfying the DiVincenzo criteria1 and recently achieving quantum advantage in secret key distribution2. Blueprint studies3-5 indicate that general-purpose quantum computing using local quantum communication networks will require millions of physical qubits to encode thousands of logical qubits, presenting an open scalability challenge. Here we introduce a modular quantum system-on-chip (QSoC) architecture that integrates thousands of individually addressable tin-vacancy spin qubits in two-dimensional arrays of quantum microchiplets into an application-specific integrated circuit designed for cryogenic control. We demonstrate crucial fabrication steps and architectural subcomponents, including QSoC transfer by means of a 'lock-and-release' method for large-scale heterogeneous integration, high-throughput spin-qubit calibration and spectral tuning, and efficient spin state preparation and measurement. This QSoC architecture supports full connectivity for quantum memory arrays by spectral tuning across spin-photon frequency channels. Design studies building on these measurements indicate further scaling potential by means of increased qubit density, larger QSoC active regions and optical networking across QSoC modules.
RESUMEN
Lithium-ion battery (LIB) is a broadly adopted technology for energy storage. With increasing demands to improve the rate capability, cyclability, energy density, safety, and cost efficiency, it is crucial to establish an in-depth understanding of the detailed structural evolution and cell-degradation mechanisms during battery operation. Here, we present a laboratory-based high-resolution and high-throughput X-ray micro-computed laminography approach, which is capable of in situ visualizing of an industry-relevant lithium-ion (Li-ion) pouch cell with superior detection fidelity, resolution, and reliability. This technique enables imaging of the pouch cell at a spatial resolution of 0.5 µm in a laboratory system and permits the identification of submicron features within cathode and anode electrodes. We also demonstrate direct visualization of the lithium plating in the imaged pouch cell, which is an important phenomenon relevant to battery fast charging and low-temperature cycling. Our development presents an avenue toward a thorough understanding of the correlation among multiscale structures, chemomechanical degradation, and electrochemical behavior of industry-scale battery pouch cells.
RESUMEN
Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.
RESUMEN
Semi-solid lithium-ion batteries (SSLIBs) based on "slurry-like" electrodes hold great promise to enable low-cost and sustainable energy storage. However, the development of the SSLIBs has long been hindered by the lack of high-performance anodes. Here the origin of low initial Coulombic efficiency (iCE, typically <60%) is elucidated in the graphite-based semi-solid anodes (in the non-flowing mode) and develop rational strategies to minimize the irreversible capacity loss. It is discovered that Ketjen black (KB), a nanoscale conductive additive widely used in SSLIB research, induces severe electrolyte decomposition during battery charge due to its large surface area and abundant surface defects. High iCEs up to 92% are achieved for the semi-solid graphite anodes by replacing KB with other low surface-area, low-defect conductive additives. A semi-solid full battery (LiFePO4 vs graphite, in the non-flowing mode) is further demonstrated with stable cycle performance over 100 cycles at a large areal capacity of 6 mAh cm-2 and a pouch-type semi-solid full cell that remains functional even when it is mechanically abused. This work demystifies the SSLIBs and provides useful physical insights to further improve their performance and durability.
RESUMEN
Nickel-rich layered oxides are envisaged as one of the most promising alternative cathode materials for lithium-ion batteries, considering their capabilities to achieve ultrahigh energy density at an affordable cost. Nonetheless, with increasing Ni content in the cathodes comes a severe extent of Ni4+ redox side reactions on the interface, leading to fast capacity decay and structural stability fading over extended cycles. Herein, dual additives of bis(vinylsulfonyl)methane (BVM) and lithium difluorophosphate (LiDFP) are adopted to synergistically generate the F-, P-, and S-rich passivation layer on the cathode, and the Ni4+ activity and dissolution at high voltage are restricted. The sulfur-rich layer formed by the polymerization of BVM, combined with the Li3PO4 and LiF phases derived from LiDFP, alleviates the problems of increased impedance, cracks, and an irreversible H2-H3 phase transition. Consequently, the Ni-rich LiNixM1-xO2 (x > 0.95) button half-cell cycled in LiDFP + BVM electrolyte exhibits a significant discharging capacity of 181.4 mAh g-1 at 1 C (1 C = 200 mA g-1) with retention of 83.7% after 100 cycles, surpassing the performance of the commercial electrolyte (160.7 mAh g-1) with retention of 53.3%. Remarkably, the NCM95||graphite pouch cell exhibits a remarkable capacity retention of 95.5% after 200 cycles. This work inspires the rational design of electrolyte additives for ultrahigh-energy batteries with nickel-rich layered oxide cathodes.
RESUMEN
P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. The materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2-O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2-Z transition reversibility benefiting from strong Sn-O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g-1 (10 mA g-1), 110 mAh g-1 (200 mA g-1), and 100 mAh g-1 (500 mA g-1) and a high capacity retention of 80% (500 mA g-1, 500 cycles).
RESUMEN
A central goal in many quantum information processing applications is a network of quantum memories that can be entangled with each other while being individually controlled and measured with high fidelity. This goal has motivated the development of programmable photonic integrated circuits (PICs) with integrated spin quantum memories using diamond color center spin-photon interfaces. However, this approach introduces a challenge into the microwave control of individual spins within closely packed registers. Here, we present a quantum memory-integrated photonics platform capable of (i) the integration of multiple diamond color center spins into a cryogenically compatible, high-speed programmable PIC platform, (ii) selective manipulation of individual spin qubits addressed via tunable magnetic field gradients, and (iii) simultaneous control of qubits using numerically optimized microwave pulse shaping. The combination of localized optical control, enabled by the PIC platform, together with selective spin manipulation opens the path to scalable quantum networks on intrachip and interchip platforms.
RESUMEN
In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 µg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 µg/mL and 0.46 µg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Productos Lácteos , Lactoferrina , Lactoferrina/análisis , Lactoferrina/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Productos Lácteos/análisis , Fluorescencia , Límite de Detección , Espectrometría de Fluorescencia/métodos , Análisis de los Alimentos/métodos , Transferencia Resonante de Energía de Fluorescencia/métodosRESUMEN
Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i)-ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δϵd) should reduce |ΔGH-metal(i)-ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δϵd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12â mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4â kWh kgamm -1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.
RESUMEN
Electrocatalytic alkyne semihydrogenation under mild conditions is a more attractive approach for alkene production than industrial routes but suffers from either low production efficiency or high energy consumption. Here, we describe a tandem catalytic concept that overcomes these challenges. Component (i), which can trap hydrogen effectively, is partnered with component (ii), which can readily release hydrogen for hydrogenation, to enable efficient generation of active hydrogen on component (i) at low overpotentials and timely (i)-to-(ii) hydrogen spillover and facile desorptive hydrogenation on component (ii). We examine this concept over bicomponent palladium-copper catalysts for the production of representative 2-methyl-3-butene-2-ol (MBE) from 2-methyl-3-butyne-2-ol (MBY) and achieve a record high MBE production rate of 1.44â mmol h-1 cm-2 and a Faraday efficiency of ~88.8 % at a low energy consumption of 1.26â kWh kgMBE -1. With these catalysts, we further achieve 60â h continuous production of MBE with record high profit space.
RESUMEN
Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat-1 h-1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia-1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia-1.
RESUMEN
Na4 MnV(PO4 )3 /C (NMVP) has been considered an attractive cathode for sodium-ion batteries with higher working voltage and lower cost than Na3 V2 (PO4 )3 /C. However, the poor intrinsic electronic conductivity and Jahn-Teller distortion caused by Mn3+ inhibit its practical application. In this work, the remarkable effects of Zr-substitution on prompting electronic and Na-ion conductivity and also structural stabilization are reported. The optimized Na3.9 Mn0.95 Zr0.05 V(PO4 )3 /C sample shows ultrafast charge-discharge capability with discharge capacities of 108.8, 103.1, 99.1, and 88.0 mAh g-1 at 0.2, 1, 20, and 50 C, respectively, which is the best result for cation substituted NMVP samples reported so far. This sample also shows excellent cycling stability with a capacity retention of 81.2% at 1 C after 500 cycles. XRD analyses confirm the introduction of Zr into the lattice structure which expands the lattice volume and facilitates the Na+ diffusion. First-principle calculation indicates that Zr modification reduces the band gap energy and leads to increased electronic conductivity. In situ XRD analyses confirm the same structure evolution mechanism of the Zr-modified sample as pristine NMVP, however the strong ZrO bond obviously stabilizes the structure framework that ensures long-term cycling stability.
RESUMEN
Direct mass spectrometry (MS) analysis is vital to chemical and biological investigations. However, measuring complex samples is challenging due to matrix interference, resulting in compromised MS performance. In this study, an integrated experimental protocol has been developed, combining in-capillary aptamer-functionalized solid-phase microextraction (SPME), extraction nanoelectrospray ionization (nanoESI), and miniature MS analysis. The established method was applied to analyze caffeine in electronic cigarette liquid and beverage samples as proof-of-concept demonstrations. A custom SPME strip fabricated with caffeine-binding aptamers was prepared with an immobilization density of up to 0.812 nmol cm-2. Critical parameters affecting the effects of extraction, desorption, and ionization were optimized. A novel transition ion ratio-based strategy with enhanced quantitation accuracy was developed. The analytical performance of the proposed method was evaluated under optimized conditions. Acceptable recoveries of 87.5-111.5% with relative standard deviations of 3.1-6.1% and satisfactory sensitivity with limits of detection of 1.5 and 3 ng mL-1 and limits of quantitation of 5 and 10 ng mL-1 were obtained, respectively. The developed approach demonstrates a promising potential for rapid on-site applications with appealing analytical performance and efficiency.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Cafeína , Espectrometría de Masas/métodosRESUMEN
The path toward Li-ion batteries with higher energy densities will likely involve use of thin lithium (Li)-metal anode (<50 µm thickness), whose cyclability today remains limited by dendrite formation and low coulombic efficiency (CE). Previous studies have shown that the solid-electrolyte interface (SEI) of the Li metal plays a crucial role in Li-electrodeposition and -stripping behavior. However, design rules for optimal SEIs are not well established. Here, using integrated experimental and modeling studies on a series of structurally similar SEI-modifying model compounds, we reveal the relationship between SEI compositions, Li deposition morphology, and CE and identify two key descriptors for the fraction of ionic compounds and compactness, leading to high-performance SEIs. We further demonstrate one of the longest cycle lives to date (350 cycles for 80% capacity retention) for a high specific-energy Li||LiCoO2 full cell (projected >350 watt hours [Wh]/kg) at practical current densities. Our results provide guidance for rational design of the SEI to further improve Li-metal anodes.
RESUMEN
Many studies have shown that alterations in the gut microbiota are associated with hypertension. Our study aimed to observe the characteristics of the gut microbiota in hypertension and to further explore whether drug molecules can play a therapeutic role in hypertension by interfering with the gut microbiota. We evaluated the differences in the composition of the gut microbiota in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Meanwhile, three first-line cardiovascular disease (CVD) drugs, losartan, atorvastatin, and aspirin, were used to treat the SHR in order to observe their effects on the gut microbiota in SHR. The 16S rDNA results showed that the diversity and richness of the gut microbiota in SHR were significantly reduced compared with that of the WKY, the Firmicutes/Bacteroidetes ratio was increased, the abundances of Bifidobacterium and short chain fatty acids (SCFAs)-producing bacteria decreased, and the abundance of lactate-producing bacteria increased. In addition to lowering the blood pressure, losartan increased the abundances of Alistipes, Bacteroides, and Butyricimonas in SHR, reduced the abundances of Ruminococcaceae, Streptococcus, and Turicibacter, reduced the Firmicutes/Bacteroidetes ratio, and rebalanced the gut microbiota. Losartan also increased the abundances of Bifidobacterium and SCFAs-producing bacteria and reduced the abundance of lactate-producing bacteria. However, atorvastatin and aspirin had no significant effect on the gut microbiota in SHR. The above results showed that losartan could change the characteristics of the gut microbiota in hypertension and rebalance the gut microbiota, which may be related to lowering the blood pressure. Atorvastatin and aspirin have no significant influence on the gut microbiota in SHR.
Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Ratas , Animales , Losartán/farmacología , Presión Sanguínea , Ratas Endogámicas SHR , Atorvastatina/farmacología , Aspirina/farmacología , Hipertensión/tratamiento farmacológico , Ratas Endogámicas WKYRESUMEN
Hypertension in adolescents is associated with adverse cardiac and vascular events. In addition to lowering blood pressure, it is not clear whether pharmacological therapy in early life can improve vascular remodeling. This study aimed to evaluate the effects of long-term administration of losartan, aspirin, and atorvastatin on vascular remodeling in juvenile spontaneously hypertensive rats (SHRs). Losartan, aspirin, and atorvastatin were administered via gavage at doses of 20, 10, and 10 mg/kg/day, respectively, on SHRs aged 6-22 weeks. Paraffin sections of the blood vessels were stained with hematoxylin-eosin (H&E) and Sirius Red to evaluate the changes in the vascular structure and the accumulation of different types of collagen. The plasma levels of renin, angiotensin II (Ang II), aldosterone (ALD), endothelin-1 (ET-1), interleukin-6 (IL-6), and neutrophil elastase (NE) were determined using ELISA kits. After the 16-week treatment with losartan, aspirin, and atorvastatin, the wall thickness of the thoracic aorta and carotid artery decreased. The integrity of the elastic fibers in the tunica media was maintained in an orderly manner, and collagen deposition in the adventitia was retarded. The plasma levels of renin, ALD, ET-1, IL-6, and NE in the SHRs also decreased. These findings suggest that losartan, aspirin, and atorvastatin could improve vascular remodeling beyond their antihypertensive, anti-inflammatory, and lipid-lowering effects. Many aspects of the protection provided by pharmacological therapy are important for the prevention of cardiovascular diseases in adults and older adults.
Asunto(s)
Hipertensión , Losartán , Ratas , Animales , Losartán/farmacología , Ratas Endogámicas SHR , Atorvastatina , Renina/farmacología , Renina/uso terapéutico , Remodelación Vascular , Aspirina/farmacología , Interleucina-6/farmacología , Presión Sanguínea , Hipertensión/tratamiento farmacológico , Antihipertensivos/farmacología , Colágeno/farmacologíaRESUMEN
Commercialization of aqueous batteries is mainly hampered by their low energy density, owing to the low mass loading of active cathode materials. In this work, a MnO2 cathode structure (MnO2 /CTF) is designed to modify the MnO2 /collector interface for enhanced ion transportation properties. Such a cathode can achieve ultrahigh mass loading of MnO2 , large areal capacity, and high energy density, with excellent cycling stability and rate performance. Specifically, a 0.15 mm thick MnO2 /CTF cathode can realize a mass loading of 20 mg cm-2 with almost 100% electrochemical conversion of MnO2 , providing the maximum areal capacity of 12.08 mA h cm-2 and energy density of 191 W h kg-1 for Zn-MnO2 /CTF batteries when considering both cathode and anode. Besides the conventional low energy demonstrations, such a Zn-MnO2 /CTF battery is capable of realistic applications, such as mobile phones in our daily life, which is a promising alternative for wearable electronics.
Asunto(s)
Compuestos de Manganeso , Óxidos , Zinc , Suministros de Energía EléctricaRESUMEN
Tin-vacancy centers in diamond are promising spin-photon interfaces owing to their high quantum efficiency, large Debye-Waller factor, and compatibility with photonic nanostructuring. Benchmarking their single-photon indistinguishability is a key challenge for future applications. Here, we report the generation of single photons with 99.7_{-2.5}^{+0.3}% purity and 63(9)% indistinguishability from a resonantly excited tin-vacancy center in a single-mode waveguide. We obtain quantum control of the optical transition with 1.71(1)-ns-long π pulses of 77.1(8)% fidelity and show it is spectrally stable over 100 ms. A modest Purcell enhancement factor of 12 would enhance the indistinguishability to 95%.
RESUMEN
A new type of aptamer-functionalized pH-responsive polymer-modified magnetic nanoparticles (ApMNPs) is introduced for specific enrichment and sensitive determination of lactoferrin (Lf) in complex matrixes. In the construction, Fe3O4@3-(Triethoxysilyl)propylmethacrylate@poly(4-Vinyl-1, 3-dioxolan-2-one-acrylic acid) (Fe3O4@MPS@p(VEC-AA)) were synthesized as pH-responsive polymer-modified magnetic nanoparticles (pMNPs) through free radical polymerization to increase the tunable interaction. Lf-binding aptamers were conjugated onto pMNPs through the reaction of amino-group in aptamer and epoxide-group in VEC, innovatively applied to prepare Lf-ApMNPs. On the basis of the synergistic effect of specific affinity of aptamer on Lf and tunable hydrophobic/hydrophilic property of pH-responsive polymer, Lf-ApMNPs presented good selectivity toward Lf, excellent adsorption capacity (as high as 233.9 mg g-1), as well as good recoveries in the range 93.6-99.6% in Lf-related nutrition samples. Significantly, the introduction of pH-responsive monomer (AA) effectively regulated the adsorption-desorption process of Lf, with the function similar to a switch. Moreover, the good performances of Ct-ApMNPs toward α-Chymotrypsin showed that ApMNPs exhibited universality to other proteins through easily changing the binding aptamer, thereby offering a facile and efficient approach for specific enrichment and sensitive determination of targets in real biological samples.
Asunto(s)
Nanopartículas de Magnetita , Polímeros , Polímeros/química , Lactoferrina/química , Nanopartículas de Magnetita/química , Magnetismo , Oligonucleótidos , Concentración de Iones de HidrógenoRESUMEN
For aptamer selection, the random-region length of an ssDNA library was generally taken in a relatively arbitrary fashion, which may lead to failure for unsuitable target binding. Herein, we coupled high-efficiency capillary electrophoresis (CE)-SELEX and high-throughput sequencing (HTS) to investigate the influences of random-region length. First, one round of selection against programmed cell death-ligand 1 (PD-L1) was performed using ssDNA libraries with random-region lengths of 15, 30, 40, and 60 nt, respectively. A good correlation was observed between candidates' random-region lengths and dissociation constant (Kd), in which the longer sequences presented higher affinity, and the picked Seq 60-1 after one round notably presented a similar affinity toward a reported aptamer through eight rounds. Molecular dynamics (MD) simulation suggested, for PD-L1, the long sequence could supply more noncovalent bonds including hydrogen bonds, electrostatic interactions, and hydrophobic interactions to form a stable protein/aptamer complex. Besides, four other proteins with selective binding performances validated the importance of random-region length. To further investigate how random-region length affects the selection efficiency, a mixed library with random-region lengths ranging from 10 to 50 nt was employed for six rounds of selection against Piezo2. Sequence variations were tracked by HTS, showing the preferential evolution and PCR uncertainty with even higher impact were the main causes. This study suggested random-region length plays a crucial factor, and a mixed library with different random-region sequences can be a worthy choice for increasing the speed of high-affinity aptamer selection. Moreover, the PCR process should be given particular attention in aptamer selection.