Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 21(1): 544, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580750

RESUMEN

BACKGROUND: Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS: PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS: The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-ß1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION: LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.


Asunto(s)
Fibrilación Atrial , Animales , Ratones , Fibrilación Atrial/genética , Fibrosis , Atrios Cardíacos/patología , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Factores de Necrosis Tumoral/metabolismo , Humanos
2.
BMC Microbiol ; 23(1): 320, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924005

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses. RESULTS: Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and performed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leveraging the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, and Monoglobus. CONCLUSIONS: Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/metabolismo , Transcriptoma , Bacterias/genética , Biomarcadores
3.
Medicina (Kaunas) ; 59(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37893458

RESUMEN

Background and Objectives: With the growing incidence and disability associated with myocardial infarction (MI), there is an increasing focus on cardiac rehabilitation post-MI. Kuanxiongzhuyu decoction (KXZY), a traditional Chinese herbal formula, has been used in the rehabilitation of patients after MI. However, the chemical composition, protective effects, and underlying mechanism of KXZY remain unclear. Materials and Methods: In this study, the compounds in KXZY were identified using a high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method. Based on the compounds identified in the KXZY, we predictively selected the potential targets of MI and then constructed a protein-protein interaction (PPI) network to identify the key targets. Furthermore, the DAVID database was used for the GO and KEGG analyses, and molecular docking was used to verify the key targets. Finally, the cardioprotective effects and mechanism of KXZY were investigated in post-MI mice. Results: A total of 193 chemical compounds of KXZY were identified by HPLC-MS. In total, 228 potential targets were obtained by the prediction analysis. The functional enrichment studies and PPI network showed that the targets were largely associated with AKT-pathway-related apoptosis. The molecular docking verified that isoguanosine and adenosine exhibited excellent binding to the AKT. In vivo, KXZY significantly alleviated cardiac dysfunction and suppressed AKT phosphorylation. Furthermore, KXZY significantly increased the expression of the antiapoptotic proteins Bcl-2 and Bcl-xl and decreased the expression of the proapoptotic protein BAD. Conclusions: In conclusion, the network pharmacological and experimental evidence suggests that KXZY manifests anti-cardiac dysfunction behavior by alleviating cardiomyocyte apoptosis via the AKT pathway in MI and, thus, holds promising therapeutic potential.


Asunto(s)
Rehabilitación Cardiaca , Infarto del Miocardio , Humanos , Animales , Ratones , Farmacología en Red , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico
4.
Int J Clin Pract ; 75(4): e13732, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32975347

RESUMEN

BACKGROUND: Radiofrequency ablation in patients with atrial fibrillation (AF) is effective but hampered by pulmonary veins reconnection because of insufficient lesions. High power shorter duration ablation (HPSD) was seen to increase efficacy and safety. This analysis aimed to evaluate the clinical benefits of HPSD in patients with AF. METHODS: The Medline, PubMed, Embase, and the Cochrane Library databases were searched for studies comparing HPSD and Low power longer duration (LPLD) ablation. RESULTS: A total of seven trials with 2023 patients were included in the analysis. Pooled analyses demonstrated that HPSD showed a benefit of first-pass pulmonary vein isolation (PVI) [risk ratio (RR): 1.27; 95% confidence interval (CI): 1.18-1.37, P < .001]. HPSD could reduce recurrence of atrial arrhythmias (RR: 0.70; 95% CI: 0.50-0.98, P = .04). Additionally, HPSD was more beneficial in terms of procedural time [Weighted Mean Difference, (WMD): -44.62; 95% CI, -63.00 to -26.23, P < .001], ablation time (WMD: -21.25; 95% CI: -25.36 to -17.13, P < .001), and fluoroscopy time (WMD: -4.13; 95% CI: -7.52 to -0.74, P < .001). Moreover, major complications and esophageal thermal injury (ETI) were similar between two groups (RR: 0.75; 95% CI: 0.44-1.30, P = .31) and (RR: 0.64; 95% CI: 0.17-2.39, P = .51). CONCLUSION: HPSD was safe and efficient for treating AF with clear advantages of procedural features, it also showed benefits of higher first-pass PVI and reducing recurrence of atrial arrhythmias compared with the LPLD. Moreover, major complications and ETI were similar between two groups.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Fibrilación Atrial/cirugía , Humanos , Venas Pulmonares/cirugía , Recurrencia , Factores de Tiempo , Resultado del Tratamiento
5.
Herz ; 46(Suppl 2): 215-221, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33118081

RESUMEN

OBJECTIVE: Elevated microalbuminuria (MAU) levels have been demonstrated in patients with heart failure with reduced ejection fraction (HFrEF). However, nothing is known about MAU levels in patients with heart failure with preserved ejection fraction (HFpEF). Therefore, the aim of our study was to explore the relationship between MAU levels and HFpEF. METHODS: The MAU and N­terminal B­type natriuretic peptide (NT-proBNP) concentrations were examined in 260 participants, including 160 patients with HFpEF and 100 control subjects without HF. Echocardiography was performed on all study participants. The patients with HFpEF were divided into class II, III, or IV according to the New York Heart Association (NYHA) classification. RESULTS: The MAU levels in the HFpEF group were significantly higher than those in the non-HF group (58.97 ± 89.84 vs. 19.56 ± 29.34, p > 0.05). However, there was no significant difference in the levels of MAU among NYHA class II-IV patients in the HFpEF group (p > 0.05). In Pearson linear correlation analysis, MAU levels in the HFpEF group were positively correlated with left atrial diameter (LAD; r = 0.344, p < 0.05), but negatively correlated with hemoglobin (r = - 0.233, p < 0.05). The area under the ROC curve (AUC) of MAU for the diagnosis of HFpEF was 0.83 (95% CI [0.76, 0.90], p < 0.05), the sensitivity was 72.50%, and the specificity was 82.0%. The AUC of NT-proBNP was 0.88 (95% CI [0.83, 0.94], p < 0.05), the sensitivity was 82%, and the specificity was 73.8%. The AUC of MAU combined with NT-proBNP was 0.91 (95% CI [0.86, 0.96], p < 0.05). CONCLUSION: Our results show that MAU can be used as a biomarker for the diagnosis of HFpEF. Combined detection of MAU with NT-proBNP has clinical value in improving the accuracy of diagnosis of HFpEF. However, there is no significant correlation between MAU levels and the severity of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Humanos , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Pronóstico , Volumen Sistólico
6.
Biomed Pharmacother ; 177: 117048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959606

RESUMEN

BACKGROUND AND OBJECTIVES: Diabetic cardiomyopathy (DCM) is a cardiac condition resulting from myocardial damage caused by diabetes mellitus (DM), currently lacking specific therapeutic interventions. Fuzhengkangfu decoction (FZK) plays an important role in the prevention and treatment of various cardiovascular diseases. However, the efficacy and potential mechanisms of FZK are not fully understood. This study aims to investigate the protective effect and mechanisms of FZK against DCM. METHODOLOGIES: Rats were given a high-calorie diet along with a low dosage of streptozotocin (STZ) to establish a rat model of DCM. The diabetic rats received FZK or normal saline subcutaneously for 12 weeks. Echocardiography was conducted to evaluate their heart function characteristics. Rat heart morphologies were assessed using Sirius Red staining and H&E staining. Transcriptome sequencing analysis and network pharmacology were used to reveal possible targets and mechanisms. Molecular docking was conducted to validate the association between the primary components of FZK and the essential target molecules. Finally, both in vitro and in vivo studies were conducted on the cardioprotective properties and mechanism of FZK. RESULTS: According to the results of network pharmacology, FZK may prevent DCM by reducing oxidative stress and preventing apoptosis. Transcriptomics confirmed that FZK protected against DCM-induced myocardial fibrosis and remodelling, as predicted by network pharmacology, and suggested that FZK regulated the expression of oxidative stress and apoptosis-related proteins. Integrating network pharmacology and transcriptome analysis results revealed that the AGE-RAGE signalling pathway-associated MMP2, SLC2A1, NOX4, CCND1, and CYP1A1 might be key targets. Molecular docking showed that Poricoic acid A and 5-O-Methylvisammioside had the highest docking activities with these targets. We further conducted in vivo experiments, and the results showed that FZK significantly attenuated left ventricular remodelling, reduced myocardial fibrosis, and improved cardiac contractile function. And, our study demonstrated that FZK effectively reduced oxidative stress and apoptosis of cardiomyocytes. The data showed that Erk, NF-κB, and Caspase 3 phosphorylation was significantly inhibited, and Bcl-2/Bax was significantly increased after FZK treatment. In vitro, FZK significantly reduced AGEs-induced ROS increase and apoptosis in cardiomyocytes. Furthermore, FZK significantly inhibited the phosphorylation of Erk and NF-κB proteins and decreased the expression of MMP2. All the results confirmed that FZK inhibited the activation of the Erk/NF-κB pathway in AGE-RAGE signalling and alleviated oxidative stress and apoptosis of cardiomyocytes. In summary, we verified that FZK protects against DCM by inhibiting myocardial apoptotic remodelling through the suppression of the AGE-RAGE signalling pathway. CONCLUSION: In conclusion, our research indicates that FZK demonstrates anti-cardiac dysfunction properties by reducing oxidative stress and cardiomyocyte apoptosis through the AGE-RAGE pathway in DCM, showing potential for therapeutic use.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratas Sprague-Dawley , Transcriptoma , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Medicamentos Herbarios Chinos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Ratas , Transcriptoma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibrosis , Estreptozocina , Perfilación de la Expresión Génica , Cardiotónicos/farmacología
7.
Front Pharmacol ; 12: 725186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046797

RESUMEN

Myocardial hypertrophy plays an essential role in the structural remodeling of the heart and the progression to heart failure (HF). There is an urgent need to understand the mechanisms underlying cardiac hypertrophy and to develop treatments for early intervention. Dangshen Erling decoction (DSELD) is a clinically used formula in Chinese medicine for treating coronary heart disease in patients with HF. However, the mechanism by which DSELD produces its cardioprotective effects remains largely unknown. This study explored the effects of DSELD on myocardial hypotrophy both in vitro and in vivo. In vitro studies indicated that DSELD significantly (p < 0.05) reduced the cross-sectional area of the myocardium and reduced elevated lactate dehydrogenase (LDH), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 levels in the induced H9C2 cell model to study inflammation. In vivo experiments revealed that DSELD restores cardiac function and significantly reduces myocardial fibrosis in isoproterenol (ISO)-induced HF mouse model (p < 0.05). In addition, DSELD downregulated the expression of several inflammatory cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), IL-1α, IL-1ß, IL-3, IL-5, IL-7, IL-12, IL-13, and TNF-α in HF (p < 0.05). Further analysis of the cardiac tissue demonstrated that DSELD produces its anti-inflammatory effects via the Toll-like receptor (TLR)4 signaling pathway. The expression of TLR4 downstream proteins such as matrix metalloproteinase-9 (MMP9) and myeloid differentiation factor-88 (MyD88) was among the regulated targets. In conclusion, these observations suggest that DSELD exerts antihypertrophic effects by alleviating the inflammatory injury via the TLR4 signaling pathway in HF and thus holds promising therapeutic potentials.

8.
ACS Omega ; 5(23): 14051-14060, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566871

RESUMEN

Cardiotoxicity of doxorubicin (DOX) has gained increasing attention in clinical application. Fuzhengkangfu (FZK) decoction, a traditional Chinese herbal formula of replenishing Qi strengthening spleen, has been used to treat various cardiovascular diseases. However, the chemical composition, the protective effects of FZK, and the underlying mechanisms are yet unclear. In this study, an high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method was established for the structural identification of constituents in FZK extracts. Target prediction and enrichment analysis of the identified ingredients were performed. The cell viability was measured via (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (MTT) assay. The protective effects of FZK on cell survival, mitochondrial membrane potential, intracellular calcium homeostasis, and cell apoptosis were detected. The level of relevant proteins was measured by Western blot. The effect of FZK on the antitumor activity of DOX was evaluated in HeLa cells. A total of 42 major chemical constituents were identified in FZK extracts by HPLC-MS. A comprehensive target prediction of these constituents retrieved 46 pathways, of which several key pathways were related to mitochondrial dysfunction, including metabolic pathways and calcium signaling pathways. Furthermore, FZK ameliorated DOX-induced H9C2 cell apoptosis and increased the Bcl-2/Bax ratio. Also, it moderated the loss of mitochondrial membrane potential and reduced the intracellular calcium overload, which are the major targets of DOX-induced injury. These results confirmed that FZK ameliorates DOX-induced cardiotoxicity via antiapoptotic and mitochondrial protection but does not affect the antitumor activity of DOX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA