Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Surg Oncol ; 31(5): 3502-3512, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429534

RESUMEN

PURPOSE: Esophageal squamous carcinoma (ESCC) is a gastrointestinal malignancy with a high mortality, but the tumorigenesis is still unclear, restricting the target therapy development of ESCC. We explored the role of COL8A1 in ESCC development. METHODS: Tissue microarrays were used to investigate the expression level of COL8A1 in ESCC tissues. The association between COL8A1 and the overall survival of ESCC patients was assessed. The effect of differential COL8A1 expression on tumor growth was investigated by the xenograft model. The regulation of COL8A1 on tumor growth, migration, and invasion was studied by using ESCC cell lines. The signal transduction pathways involved in COL8A1 were bioinformatically profiled and validated. RESULTS: The COL8A1 was significantly expressed in cancerous tissues and was associated with poor prognosis in patients with ESCC. In vivo, the tumor growth obviously declined after inhibition of the COL8A1 expression. The abilities of cell proliferation and invasion were both decreased when the expression of COL8A1 was knockdown in ESCC cell line. Furthermore, we found the inactivation of the PI3K/AKT pathway that was mediated by knockdown of COL8A1 in ESCC cells, which was reversed with COL8A1 overexpression, whereas the cell proliferation and invasion ability were restored. CONCLUSIONS: This is the first report that COL8A1 promote ESCC progression, which hopefully will provide a theoretical basis for clinical targeting of ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Línea Celular Tumoral , Invasividad Neoplásica , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
2.
Phys Rev Lett ; 132(19): 193601, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804949

RESUMEN

Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong-coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.

3.
Opt Express ; 31(13): 21881-21898, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381275

RESUMEN

We investigated the transmission of single and two photons in a one-dimensional waveguide that is coupled with a Kerr micro-ring resonator and a polarized quantum emitter. In both cases, a phase shift occurs, and the non-reciprocal behavior of the system is attributed to the unbalanced coupling between the quantum emitter and the resonator. Our analytical solutions and numerical simulations demonstrate that the nonlinear resonator scattering causes the energy redistribution of the two photons through the bound state. When the system is in the two-photon resonance state, the polarization of the correlated two photons is locked to their propagation direction, leading to non-reciprocity. As a result, our configuration can act as an optical diode.

4.
Phys Rev Lett ; 130(7): 073602, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867822

RESUMEN

Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.

5.
Chaos ; 33(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561122

RESUMEN

The rapid development of quantitative portfolio optimization in financial engineering has produced promising results in AI-based algorithmic trading strategies. However, the complexity of financial markets poses challenges for comprehensive simulation due to various factors, such as abrupt transitions, unpredictable hidden causal factors, and heavy tail properties. This paper aims to address these challenges by employing heavy-tailed preserving normalizing flows to simulate the high-dimensional joint probability of the complex trading environment under a model-based reinforcement learning framework. Through experiments with various stocks from three financial markets (Dow, NASDAQ, and S&P), we demonstrate that Dow outperforms the other two based on multiple evaluation metrics in our testing system. Notably, our proposed method mitigates the impact of unpredictable financial market crises during the COVID-19 pandemic, resulting in a lower maximum drawdown. Additionally, we explore the explanation of our reinforcement learning algorithm, employing the pattern causality method to study interactive relationships among stocks, analyzing dynamics of training for loss functions to ensure convergence, visualizing high-dimensional state transition data with t-SNE to uncover effective patterns for portfolio optimization, and utilizing eigenvalue analysis to study convergence properties of the environment's model.

6.
BMC Genomics ; 23(1): 231, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331129

RESUMEN

BACKGROUND: The cryptochromes (CRY) are specific blue light receptors of plants and animals, which play crucial roles in physiological processes of plant growth, development, and stress tolerance. RESULTS: In the present work, a systematic analysis of the CRY gene family was performed on twelve cotton species, resulting in 18, 17, 17, 17, and 17 CRYs identified in five alloteraploid cottons (Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii), respectively, and five to nine CRY genes in the seven diploid species. Phylogenetic analysis of protein-coding sequences revealed that CRY genes from cottons and Arabidopsis thaliana could be classified into seven clades. Synteny analysis suggested that the homoeolog of G. hirsutum Gh_A02G0384 has undergone an evolutionary loss event in the other four allotetraploid cotton species. Cis-element analysis predicated the possible functions of CRY genes in G. hirsutum. RNA-seq data revealed that Gh_D09G2225, Gh_A09G2012 and Gh_A11G1040 had high expressions in fiber cells of different developmental states. In addition, the expression levels of one (Gh_A03G0120), 15 and nine GhCRY genes were down-regulated following the PEG, NaCl and high-temperature treatments, respectively. For the low-temperature treatment, five GhCRY genes were induced, and five were repressed. These results indicated that most GhCRY genes negatively regulate the abiotic stress treatments. CONCLUSION: We report the structures, domains, divergence, synteny, and cis-elements analyses systematically of G. hirsutum CRY genes. Possible biological functions of GhCRY genes in differential tissues as well as in response to abiotic stress during the cotton plant life cycle were predicted.


Asunto(s)
Criptocromos , Gossypium , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/fisiología , Familia de Multigenes , Filogenia
7.
Plant Biotechnol J ; 20(4): 691-710, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34800075

RESUMEN

Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.


Asunto(s)
Fusarium , Gossypium , Mapeo Cromosómico , Fibra de Algodón , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Gossypium/genética , Fenotipo , Filogenia , Fitomejoramiento , Sitios de Carácter Cuantitativo
8.
J Recept Signal Transduct Res ; 42(4): 382-389, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34423728

RESUMEN

Recent studies have shown that many long noncoding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and involved in the pathological progress of ovarian cancer. In the present study, we aimed to investigate the role of lncRNA LINC00858 and the potential mechanism in ovarian cancer. The qRT-PCR was used to measure the expression levels of LINC00858 and miR-134-5p in ovarian cancer tissue specimens and cell lines. Loss-of-function assays were performed to investigate the role of LINC00858 in ovarian cancer. MTT assay was carried out to measure cell proliferation. Transwell assays were performed to determine cell migration and invasion. Biological information analysis and luciferase report gene assay were used to verify potential downstream genes of LINC00858. The xenograft mouse model was established to analyze tumor growth in vivo. Our results showed that LINC00858 was highly expressed in human ovarian cancer tissues and cell lines. Knockdown of LINC00858 inhibited cell proliferation, migration and invasion of SKOV3 cells, and suppressed tumor growth in mouse xenograft models. Mechanistic studies revealed that LINC00858 acted as a sponge of miR-134-5p and then regulated TRIM44 expression in SKOV3 cells. Furthermore, rescue experiments illustrated that inhibition of miR-134-5p restored the inhibitory effects of LINC00858 knockdown on cell proliferation, migration and invasion. TRIM44 overexpression could counteract the inhibitory effects of miR-134-5p mimics on ovarian cancer cells. In conclusion, these findings demonstrated that LINC00858 exerted oncogenic role in ovarian cancer, which was mediated by miR-134-5p/TRIM44 axis. Thus, LINC00858 might be a therapeutic target for the treatment of ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Motivos Tripartitos/genética
9.
Sensors (Basel) ; 22(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632062

RESUMEN

Hall-effect sensors are used for the non-destructive testing of wire ropes owing to their low power consumption and high operation frequency. The high-speed operation of wire ropes causes vibration inclination at different frequencies, which makes it difficult to detect the ropes. Considering that the radial signal in the magnetic flux leakage (MFL) detection method can respond to damages to the maximum extent possible, this study proposes a radial magnetic concentrator suitable for the non-destructive testing of wire ropes based on theoretical analysis and transient magnetic field simulations. The concentrator improves the radial magnetic circuit, polymerizes the leakage of the magnetic field in the detection device, and the leakage of the magnetic field of the defect converges at the sensor position of the circumferential array to improve the signal-to-noise ratio of the Hall-effect sensor. In addition, the MFL field is homogenized through the structure of the magnetic concentrator when the wire rope is tilted, which weakens the influence of the vibration tilt of the wire rope on the test results. Finally, the experiments show that the amplitude of the wire-rope damage signal is effectively improved by using the proposed radial magnetic concentration technology, hence being convenient for defect analyses.

10.
Entropy (Basel) ; 24(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35885203

RESUMEN

As a common load-bearing component, mining wire rope produces different types of damage during a long period of operation, especially in the case of damage inside the wire rope, which cannot be identified by the naked eye, and it is difficult to accurately detect such damage using the present technology. In this study we designed a non-destructive testing device based on leakage magnetism, which can effectively detect the internal defects of wire rope damage, and carried out simulation analysis to lay a theoretical foundation for the subsequent experiments. To address the noise reduction problem in the design process, a variational mode decomposition-adaptive wavelet thresholding noise reduction method is proposed, which can improve the signal-to-noise ratio and also calculate the wavelet energy entropy in the reconstructed signal to construct multi-dimensional feature vectors. For the quantitative identification of system damage, a particle swarm optimization-support vector machine algorithm is proposed. Moreover, based on the signal following the noise reduction step, seven different feature vectors, namely, the waveform area, peak value, peak-valley value, wavelet energy entropy classification, and identification of internal and external damage defects, have been determined. The results show that the device can be used to effectively identify internal damage defects. In addition, the comparative analysis showed that the algorithm can reduce the system noise and effectively identify internal and external damage defects with a certain superiority.

11.
Phys Rev Lett ; 126(20): 203601, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110200

RESUMEN

We predict a set of unusual quantum acoustic phenomena resulting from sound-matter interactions in a fully tunable solid-state platform in which an array of solid-state spins in diamond are coupled to quantized acoustic waves in a one-dimensional optomechanical crystal. We find that, by using a spatially varying laser drive that introduces a position-dependent phase in the optomechanical interaction, the mechanical band structure can be tuned in situ, consequently leading to unconventional quantum sound-matter interactions. We show that quasichiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasiunidirectional, when the spins are resonant with the bands. When the solid-state spin frequency lies within the acoustic band gap, we demonstrate the emergence of an exotic polariton bound state that can mediate long-range tunable, odd-neighbor, and complex spin-spin interactions. This work expands the present exploration of quantum phononics and can have wide applications in quantum simulations and quantum information processing.

12.
Phys Rev Lett ; 125(15): 153602, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095609

RESUMEN

Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.

13.
Neurosurg Rev ; 43(5): 1383-1389, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31502029

RESUMEN

The use of the internal maxillary artery (IMA) in intracranial artery bypass or subcranial-intracranial (SC-IC) bypass has recently been described as an alternative to traditional bypass. This study explores cerebral glucose metabolism characteristics of SC-IC bypass. Ten crescendo transient ischemic attack (TIA) patients with chronic occlusion of the middle cerebral artery (MCA) received bypass surgery of IMA with the radial artery graft (RAG) to the branch of MCA. The graft's flow volume (FV) was measured by operative intraoperative duplex ultrasonography. Positron emission tomography (PET)/computed tomography (CT) was used to calculate the preoperational and postoperational average of the standard uptake value (SUVavg) of the 18-fluoro-2-deoxy-D-glucose (18F-FDG) in the region of interest (ROI). The asymmetric index (AI) is recommended to reflect the SUVavg changes, and subsequently, cerebral glucose metabolism changes are supposedly clarified. Patent IMA-RAG-MCA bypass in ten chronic ischemia patients was confirmed by angiography after surgery. The intraoperative FV measurement value was 65.64 ± 10.52 (58.11-73.17) ml/min. Before the operation, the SUVavg of the ROI in the ischemic hemisphere (4.76 ± 2.35 (3.08-6.04)) clearly decreased compared to the one (5.99 ± 2.63 (4.11-7.87)) in the contralateral mirror region (P = 0.003). The result of AI of preoperation minus AI of postoperation was more than 10% (P = 0.031), which indicated suspicious significant changes in cerebral metabolism. All symptoms of study patients having crescendo ischemia were resolved in 1 month after the operation. In the cerebral hypoperfusion territory, uptake of 18F-FDG deceased. Improving the flow volume via SC-IC bypass makes available an elevated uptake of 18F-FDG.


Asunto(s)
Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Revascularización Cerebral/métodos , Glucosa/metabolismo , Complicaciones Posoperatorias/metabolismo , Adulto , Anciano , Isquemia Encefálica/diagnóstico por imagen , Angiografía Cerebral , Arterias Cerebrales/trasplante , Femenino , Fluorodesoxiglucosa F18 , Humanos , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/cirugía , Ataque Isquémico Transitorio/diagnóstico por imagen , Ataque Isquémico Transitorio/cirugía , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos
14.
Phys Rev Lett ; 120(9): 093601, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29547303

RESUMEN

We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

15.
Mol Phylogenet Evol ; 112: 268-276, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28414099

RESUMEN

Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and one tetraploid genomic group, namely AD. To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome duringdiversification, chloroplast genomes (cpDNA) from 6 D-genome and 2 G-genome species of Gossypium (G. armourianum D2-1, G. harknessii D2-2, G. davidsonii D3-d, G. klotzschianum D3-k, G. aridum D4, G. trilobum D8, and G. australe G2, G. nelsonii G3) were newly reported here. In combination with the 26 previously released cpDNA sequences, we performed comparative phylogenetic analyses of 34 Gossypium chloroplast genomes that collectively represent most of the diversity in the genus. Gossypium chloroplasts span a small range in size that is mostly attributable to indels that occur in the large single copy (LSC) region of the genome. Phylogenetic analysis using a concatenation of all genes provides robust support for six major Gossypium clades, largely supporting earlier inferences but also revealing new information on intrageneric relationships. Using Theobroma cacao as an outgroup, diversification of the genus was dated, yielding results that are in accord with previous estimates of divergence times, but also offering new perspectives on the basal, early radiation of all major clades within the genus as well as gaps in the record indicative of extinctions. Like most higher-plant chloroplast genomes, all cotton species exhibit a conserved quadripartite structure, i.e., two large inverted repeats (IR) containing most of the ribosomal RNA genes, and two unique regions, LSC (large single sequence) and SSC (small single sequence). Within Gossypium, the IR-single copy region junctions are both variable and homoplasious among species. Two genes, accD and psaJ, exhibited greater rates of synonymous and non-synonymous substitutions than did other genes. Most genes exhibited Ka/Ks ratios suggestive of neutral evolution, with 8 exceptions distributed among one to several species. This research provides an overview of the molecular evolution of a single, large non-recombining molecular during the diversification of this important genus.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Gossypium/genética , Análisis de Varianza , ADN de Cloroplastos/genética , Dosificación de Gen , Especiación Genética , Tamaño del Genoma , Mutación INDEL/genética , Funciones de Verosimilitud , Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Filogenia , Especificidad de la Especie
16.
Opt Express ; 25(14): 16151-16170, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789124

RESUMEN

A waveguide loop coupled to two external line waveguides by a 50/50 beam splitter forms a Sagnac interferometer. We consider the situation where two Λ-type three-level emitters are symmetrically coupled to the loop of a Sagnac interferometer and a single photon is input through one end of the line waveguides. Since the incoming photon is always in a superposition of the clockwise and counterclockwise modes of the loop and the two emitters are positioned symmetrically with respect to the input port of photon, the processes of photon scattering at the two emitters are symmetric and coherent. When the separation of the emitters and the coupling strengths of the emitters with the waveguide loop take some special values, due to quantum interference, a frequency down-conversion can certainly happen at one of the two emitters during the photon scattering but one cannot know at which emitter the frequency down-conversion takes place. This indistinguishability of the coherent frequency down-conversion processes can result in the generation of the symmetric or antisymmetric two-qubit maximally entangled states of the emitters. In the present scheme, a single photon comes in and goes out of the waveguide loop, and no photon localization modes exists. The entangled states result from the coherent frequency down-conversion processes of the emitters. Thus, the resulting entangled states are stable if the two lower-lying states of the emitters have no decay. We also investigate the influence of the dissipation of the emitters and the finite bandwidth of an input photon wavepacket on the success probability of entanglement generation, and find that the present scheme is robust to these effects and feasible with current available technologies.

17.
J Biomech Eng ; 139(5)2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28303274

RESUMEN

A wireless medical capsule for measuring the contact pressure between a mobile capsule and the small intestine lumen was developed. Two pressure sensors were used to measure and differentiate the contact pressure and the small intestine intraluminal pressure. After in vitro tests of the capsule, it was surgically placed and tested in the proximal small intestine of a pig model. The capsule successfully gathered and transmitted the pressure data to a receiver outside the body. The measured pressure signals in the animal test were analyzed in the time and frequency domains, and a mathematic model was presented to describe the different factors influencing the contact pressure. A novel signal processing method was applied to isolate the contraction information from the contact pressure. The result shows that the measured contact pressure was 1.08 ± 0.08 kPa, and the small intestine contraction pressure's amplitude and rate were 0.29 ± 0.046 kPa and 12 min-1. Moreover, the amplitudes and rates of pressure from respiration and heartbeat were also estimated. The successful preliminary evaluation of this capsule implies that it could be used in further systematic investigation of small intestine contact pressure on a mobile capsule-shaped bolus.


Asunto(s)
Intestino Delgado , Presión , Tecnología Inalámbrica/instrumentación , Cápsulas , Diseño de Equipo
18.
J Biomech Eng ; 139(8)2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28462423

RESUMEN

We have proposed a long-term, noninvasive, nonrestrictive method of delivering and implanting a biosensor within the body via a swallowable implantation capsule robot (ICR). The design and preliminary validation of the ICR's primary subsystem-the sensor deployment system-is discussed and evidence is provided for major design choices. The purpose of the sensor deployment system is to adhere a small biosensor to the mucosa of the intestine long-term, and the modality was inspired by tapeworms and other organisms that employ a strategy of mechanical adhesion to soft tissue via the combined use of hooks or needles and suckers. Testing was performed to refine the design of the suction and needle attachment as well as the sensor ejection features of the ICR. An experiment was conducted in which needle sharpness, needle length, and vacuum volume were varied, and no statistically significant difference was observed. Finally, preliminary testing, coupled with prior work within a live porcine model, provided evidence that this is a promising approach for implanting a biosensor within the small intestine.


Asunto(s)
Técnicas Biosensibles/instrumentación , Prótesis e Implantes , Robótica/instrumentación , Animales , Cápsulas , Diseño de Equipo , Porcinos
19.
Phys Rev Lett ; 117(1): 015502, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419577

RESUMEN

We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA