Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404289, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712497

RESUMEN

Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29 % with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34 %, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.

2.
Angew Chem Int Ed Engl ; 63(20): e202318754, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407918

RESUMEN

In the pursuit of highly efficient perovskite solar cells, spiro-OMeTAD has demonstrated recorded power conversion efficiencies (PCEs), however, the stability issue remains one of the bottlenecks constraining its commercial development. In this study, we successfully synthesize a novel self-polymerized spiro-type interfacial molecule, termed v-spiro. The linearly arranged molecule exhibits stronger intermolecular interactions and higher intrinsic hole mobility compared to spiro-OMeTAD. Importantly, the vinyl groups in v-spiro enable in situ polymerization, forming a polymeric protective layer on the perovskite film surface, which proves highly effective in suppressing moisture degradation and ion migration. Utilizing these advantages, poly-v-spiro-based device achieves an outstanding efficiency of 24.54 %, with an enhanced open-circuit voltage of 1.173 V and a fill factor of 81.11 %, owing to the reduced defect density, energy level alignment and efficient interfacial hole extraction. Furthermore, the operational stability of unencapsulated devices is significantly enhanced, maintaining initial efficiencies above 90 % even after 2000 hours under approximately 60 % humidity or 1250 hours under continuous AM 1.5G sunlight exposure. This work presents a comprehensive approach to achieving both high efficiency and long-term stability in PSCs through innovative interfacial design.

3.
J Cell Mol Med ; 25(24): 11097-11112, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34741389

RESUMEN

The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan-Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK-8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan-Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e-05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression-free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiología , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiología , Adulto , Anciano , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Transducción de Señal , Transcriptoma
4.
Nano Lett ; 19(6): 3953-3960, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31070924

RESUMEN

The addition of large hydrophobic cations to lead halide perovskites has significantly enhanced the environmental stability of photovoltaic cells based on these materials. However, the associated formation of two-dimensional structures inside the material can lead to dielectric confinement, higher exciton binding energies, wider bandgaps and limited charge-carrier mobilities. Here we show that such effects are not detrimental to the charge transport for carefully processed films comprising a self-assembled thin layer of quasi-two-dimensional (2D) perovskite interfaced with a 3D MAPbI3 perovskite layer. We apply a combination of time-resolved photoluminescence and photoconductivity spectroscopy to reveal the charge-carrier recombination and transport through the film profile, when either the quasi-2D or the 3D layers are selectively excited. Through modeling of the recorded dynamics, we demonstrate that while the charge-carrier mobility is lower within the quasi-2D region, charge-carrier diffusion to the 3D phase leads to a rapid recovery in photoconductivity even when the quasi-2D region is initially photoexcited. In addition, the blue-shifted emission originating from quasi-2D regions overlaps significantly with the absorption spectrum of the 3D perovskite, allowing for highly effective "heterogeneous photon recycling". We show that this combination fully compensates for the adverse effects of electronic confinement, yielding quasi-2D perovskites with highly efficient charge transporting properties.

5.
J Am Chem Soc ; 137(11): 3799-802, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25742441

RESUMEN

An N-annulated indenoperylene electron-donor decorated with photochemically inactive segments is synthesized and further conjugated via triple bond with electron-acceptor benzothiadiazolylbenzoic acid for a metal-free donor/acceptor dye. Without use of any coadsorbate, the judiciously tailored indenoperylene dye achieves a high-power conversion efficiency of 12.5% under irradiance of 100 mW cm(-2) AM1.5G sunlight.

6.
Angew Chem Int Ed Engl ; 54(20): 5994-8, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25820975

RESUMEN

Reported are two highly efficient metal-free perylene dyes featuring N-annulated thienobenzoperylene (NTBP) and N-annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal-free organic dye derived from the NTCP segment was used for a dye-sensitized solar cell which attained a power conversion efficiency of 12% under an irradiance of 100 mW cm(-2), simulated air mass global (AM1.5G) sunlight.

7.
J Am Chem Soc ; 136(1): 265-72, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24345083

RESUMEN

Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics.

8.
Chemphyschem ; 15(6): 1037-42, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24375950

RESUMEN

Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells.

9.
J Phys Chem Lett ; : 6835-6840, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917057

RESUMEN

Organic-inorganic hybrid ternary copper halides offer a broader spectrum of structural possibilities for finely tuning their optoelectronic properties. Herein, we demonstrate for the first time the potential of [N(C2H5)4]2[Cu2Br4], a zero-dimensional hybrid copper halide [(TEA)2Cu2Br4], for ultraviolet (UV) photodetection. A self-powered, visible-blind UV photodetector based on a (TEA)2Cu2Br4/GaN heterojunction architecture is developed, exhibiting a high responsivity, a high detectivity, and fast response speeds. The device demonstrates exceptional stability against environmental oxygen/moisture, heat, and UV light illumination, surpassing the stability of reported copper-based UV photodetectors. Our work highlights the significant potential of (TEA)2Cu2Br4 as a lead-free, stable, and efficient material for next-generation UV photodetection technology.

10.
Int J Biol Macromol ; 268(Pt 1): 131688, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642688

RESUMEN

Large bone defects, often resulting from trauma and disease, present significant clinical challenges. Electrospun fibrous scaffolds closely resembling the morphology and structure of natural ECM are highly interested in bone tissue engineering. However, the traditional electrospun fibrous scaffold has some limitations, including lacking interconnected macropores and behaving as a 2D scaffold. To address these challenges, a sponge-like electrospun poly(L-lactic acid) (PLLA)/polycaprolactone (PCL) fibrous scaffold has been developed by an innovative and convenient method (i.e., electrospinning, homogenization, progen leaching and shaping). The resulting scaffold exhibited a highly porous structure (overall porosity = 85.9 %) with interconnected, regular macropores, mimicking the natural extracellular matrix. Moreover, the incorporation of bioactive glass (BG) particles improved the hydrophilicity (water contact angle = 79.7°) and biocompatibility and promoted osteoblast cell growth. In-vitro 10-day experiment revealed that the scaffolds led to high cell viability. The increment of the proliferation rates was 195.4 % at day 7 and 281.6 % at day 10. More importantly, Saos-2 cells could grow, proliferate, and infiltrate into the scaffold. Therefore, this 3D PLLA/PCL with BG sponge holds great promise for bone defect repair in tissue engineering applications.


Asunto(s)
Huesos , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Poliésteres/química , Porosidad , Humanos , Ingeniería de Tejidos/métodos , Huesos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos
11.
J Colloid Interface Sci ; 672: 209-223, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838629

RESUMEN

Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.

12.
Adv Mater ; : e2400658, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782446

RESUMEN

Ion migration is a major factor affecting the long term stability of perovskite light-emitting diodes (LEDs), which limits their commercialization potential. The accumulation of excess halide ions at the grain boundaries of perovskite films is a primary cause of ion migration in these devices. Here, it is demonstrated that the channels of ion migrations can be effectively impeded by elevating the hole transport layer between the perovskite grain boundaries, resulting in highly stable perovskite LEDs. The unique structure is achieved by reducing the wettability of the perovskites, which prevents infiltration of the upper hole-transporting layer into the spaces of perovskite grain boundaries. Consequently, nanosized gaps are formed between the excess halide ions and the hole transport layer, effectively suppressing ion migration. With this structure, perovskite LEDs with operational half-lifetimes of 256 and 1774 h under current densities of 100 and 20 mA cm-2 respectively are achieved. These lifetimes surpass those of organic LEDs at high brightness. It is further found that this approach can be extended to various perovskite LEDs, showing great promise for promoting perovskite LEDs toward commercial applications.

13.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984318

RESUMEN

Current biodegradable drinking straws suffer from poor heat resistance and rigidity when wet, causing user dissatisfaction. Here, a fully biodegradable straw formed by stereocomplexation of poly (lactic acid) (SC-PLA) is reported. Because of the unique strong interaction and high density of link chains between stereocomplex crystallites (over 70% crystallinity), SC-PLA straws outperform their counterparts on the market. This coupled with the advantages of simple processing (solution casting and annealing) and relatively low cost (~2.06 cents per straw) makes SC-PLA drinking straws a superior substitute for plastic ones. Commercially available PLLA straws lose almost 60% of their flexural strength when wet compared to less than 5% of the SC-PLA straws proposed in this study.

14.
Comb Chem High Throughput Screen ; 26(7): 1311-1323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35993469

RESUMEN

BACKGROUND: Hepatocellular Carcinoma (HCC) is one of the fastest-growing malignancies globally. The impact of surgical treatment is limited, and molecular targeted therapy has not yielded a consistent efficacy. This warrants for identification of novel molecular targets. The Anti- Silencing Function of 1B histone chaperone (ASF1B) was previously studied in numerous cancers. However, the understanding of its role in HCC is limited. METHODS: The TIMER database was used to analyze the ASF1B expression in pan-cancer and paracarcinoma tissues. ASF1B expression in HCC was confirmed using the HCCDB database, Quantitative real-time PCR (q-PCR), and Western Blot (WB) assays. The relationship between clinicopathological parameters and ASF1B expression was analyzed using UALCAN, whereas the prognostic value of ASF1B was evaluated using the GEPIA database. Linkedomics and cBioPortal databases were used to validate the ASF1B co-expression associated with immune infiltration by the TIMER database. Moreover, cell proliferation after ASF1B-knockdown was determined through CCK8 and clone formation assays. RESULTS: ASF1B was highly expressed in HCC tissues, and the expression levels were linked to tumor grade, race, and disease stage. Univariate and multivariate Cox models showed that ASF1B is an independent prognostic factor in HCC. CCK8 and clone formation assays demonstrated that ASF1B promotes cell proliferation. Gene co-expression analysis in Linkedomics demonstrated that HJURP, KIF2C, KIF4A, KIF18B, and KIFC1 expressions were closely associated with ASF1B and immune infiltrate cells. CONCLUSION: This study shows that ASF1B promotes the proliferation of HCC. Besides, ASF1B could be a potential prognostic biomarker for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Proliferación Celular , Biomarcadores , Proteínas de Ciclo Celular/genética , Cinesinas
15.
J Phys Chem Lett ; 14(35): 7854-7859, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37626306

RESUMEN

Ternary copper halides have become promising materials for UV photodetection due to their stability and eco-friendliness. However, the uncontrollable crystallization induces high-concentration defects in these films, inherently limiting further improvement in device performance. Herein, we reveal the antisolvent-assisted crystallization kinetics mechanism of CsCu2I3 during the film-forming process. The nucleation rate is manipulated by adjusting precursor supersaturation using different antisolvents, resulting in decreased density and preferential orientation of the nuclei within the wet film. Subsequent annealing leads to a homogeneous and low-defect CsCu2I3 film with 40-µm-scale spherulites. A resulting visible-blind ultraviolet photodetector exhibits a responsivity of 8.73 A W-1, a specific detectivity of 5.28 × 1012 jones, and a response speed of 1.12 ms. The unencapsulated photodetector shows negligible degradation of responsivity in ambient air (∼70% humidity) for one month. Moreover, the flexible device with a responsivity of 420.2 mA W-1 and a detectivity of 1.18 × 1012 jones also shows excellent bending stability.

16.
Hepatol Int ; 17(2): 377-392, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36508088

RESUMEN

BACKGROUND: Metabolic disorder is an essential characteristic of tumor development. Ketogenesis is a heterogeneous factor in multiple cancers, but the effect of ketogenesis on hepatocellular carcinoma (HCC) is elusive. METHODS: We aimed to explain the role of ketogenesis-related hydroxy-methyl-glutaryl-CoA lyase (HMGCL) on HCC suppression. Expression pattern of HMGCL in HCC specimens was evaluated by immunohistochemistry (IHC). HMGCL was depleted or overexpressed in HCC cells to investigate the functions of HMGCL in vitro and in vivo. The anti-tumor function of HMGCL was studied in subcutaneous xenograft and Trp53Δhep/Δhep; c-Myc-driven HCC mouse models. The mechanism of HMGCL-mediated tumor suppression was studied by IHC, western blot (WB) and Cut & Tag. RESULTS: HMGCL depletion promoted HCC proliferation and metastasis, whereas its overexpression reversed this trend. As HMGCL catalyzes ß-hydroxy-butyric acid (ß-OHB) production, we discovered that HMGCL increased acetylation at histone H3K9, which further promoted the transcription of dipeptidyl peptidase 4 (DPP4), a key protein maintains intracellular lipid peroxidation and iron accumulation, leading to HCC cells vulnerability to erastin- and sorafenib-induced ferroptosis. CONCLUSION: Our study identified a critical role of HMGCL on HCC suppression, of which HMGCL regulated H3K9 acetylation through ß-OHB and modulating the expression of DPP4 in a dose-dependent manner, which led to ferroptosis in HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Dipeptidil Peptidasa 4 , Ferroptosis , Neoplasias Hepáticas , Oxo-Ácido-Liasas , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Ferroptosis/genética , Ferroptosis/fisiología , Histonas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Liasas/genética , Liasas/metabolismo , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-37861044

RESUMEN

INTRODUCTION: The role and prognostic value of POLA2 in liver cancer were comprehensively analyzed through TCGA, GEO, and ICGC databases, and the role of POLA2 in liver cancer cells and the regulatory mechanism involved were further verified through cell experiments. Hepatocellular carcinoma (HCC) is the most prevalent malignancy with high morbidity and mortality. Consequently, it is critical to identify robust and reliable predictive biomarkers and therapeutic targets for HCC patients. POLA2 is involved in the regulation of various tumors, but the specific role of POLA2 in HCC has not been reported. The regulatory role and prognostic value of POLA2 in HCC were determined by bioinformatics techniques and cell experiments. METHOD: The specific role and prognostic value of POLA2 in HCC were comprehensively analyzed by combining the expression data of POLA2 in TCGA, GEO, and ICGC databases and clinical data. In clinical samples, the expression of POLA2 in liver cancer was verified by QPCR. Further, the regulatory role of POLA2 in HCC was explored through cell experiments such as CCK-8, clonal formation experiment, EDU cell proliferation experiment, and flow cytometry. In terms of mechanism exploration, western blot was used to verify the specific regulatory mechanism that POLA2 participated in. Finally, the relationship between POLA2 and immune invasion of HCC was analyzed by using the TIMER database. RESULT: A POLA2 expression and prognosis analysis of HCC patients was conducted using the TCGA, GEO, and ICGC databases. We hypothesized that POLA2 might be one of the key factors contributing to the HCC progression. According to a combined analysis of TCGA, ICGC, and GEO databases, POLA2 was highly expressed in HCC. This was further confirmed in clinical samples using the qPCR. POLA2 knockdown was also performed in vitro on HCC cell lines to study the changes in their biological behavior. We confirmed that POLA2 was associated with HCC proliferation by CCK-8, Colony Formation, and EDU assay. We verified the POLA2's involvement in cell cycle regulation using flow techniques. The relationship between POLA2 and PI3K/AKT/mTOR pathway was explored using Western Blotting experiments regarding its mechanism. Further analysis revealed that the POLA2 expression was significantly associated with HCC immune infiltration. CONCLUSION: Our study demonstrated POLA2's importance in HCC development and progression and its potential role as a biomarker for disease progression on multiple levels. POLA2 has an important role in regulating the cell cycle and cell proliferation. By interfering with the cell cycle and proliferation, HCC cell growth is inhibited. Furthermore, POLA2 expression was significantly associated with immune infiltration. POLA2 may play a role in HCC immunotherapy based on its correlation with several immune cell types' genetic markers. The findings of this study are expected to lead to new anticancer strategies for HCC.

18.
Nat Commun ; 14(1): 573, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732540

RESUMEN

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.

19.
Nat Commun ; 14(1): 3216, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270581

RESUMEN

Although the power conversion efficiency values of perovskite solar cells continue to be refreshed, it is still far from the theoretical Shockley-Queisser limit. Two major issues need to be addressed, including disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. Herein, we develop a thermally polymerized additive as the polymer template in the perovskite film, which can form monolithic perovskite grain and a unique "Mortise-Tenon" structure after spin-coating hole-transport layer. Importantly, the suppressed non-radiative recombination and balanced interface charge extraction benefit from high-quality perovskite crystals and Mortise-Tenon structure, resulting in enhanced open-circuit voltage and fill-factor of the device. The PSCs achieve certified efficiency of 24.55% and maintain >95% initial efficiency over 1100 h in accordance with the ISOS-L-2 protocol, as well as excellent endurance according to the ISOS-D-3 accelerated aging test.

20.
Phys Chem Chem Phys ; 14(23): 8282-6, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22576331

RESUMEN

Through elongating the end or side alkyl chains of dye molecules, we decorate anatase nanocrystals with a thicker organic assembly featuring a smaller tilt angle of the D-π-A backbone with respect to the surface normal, which retards the interfacial charge recombination and confers a higher photovoltage output on mesoscopic cobalt solar cells displaying an over 10% power conversion efficiency at the AM1.5G conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA