Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Food ; 27(2): 110-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181190

RESUMEN

The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1ß proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1ß, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Ipomoea batatas , Animales , Ratones , Sulfato de Dextran/efectos adversos , Colon/patología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Antocianinas/metabolismo , ARN Ribosómico 16S , Piroptosis , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Intestinos/patología , Modelos Animales de Enfermedad
2.
J Agric Food Chem ; 72(1): 245-258, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38148374

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has become a major global health problem with no approved pharmacological treatment for this disease. Thus, it is urgent to develop effective therapeutic targets for clinical intervention. Here, we show for the first time that ZFP30, a member of the KRAB-ZFP family, is significantly increased in NAFLD models. ZFP30 silencing ameliorates free fatty acid (FFA)-induced lipid accumulation; in contrast, the ZFP30 overexpression exacerbates the triglyceride accumulation and steatosis in hepatocytes. Further investigation revealed that the effects of ZFP30 on hepatic lipid accumulation were mainly attributed to the PPARα downregulation in the NAFLD model. Mechanistically, ZFP30 directly binded to the promoter of PPARα and recruited KAP1 to suppress its transcription. Moreover, chlorogenic acid (CGA) reversed the upregulation of ZFP30 in NAFLD, promoting the PPARα expression, resulting in enhanced fatty acid oxidation and alleviated hepatic steatosis. Collectively, our study indicates ZFP30 as a potential target for NAFLD treatment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Ácidos Grasos no Esterificados/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
3.
Sci Total Environ ; 914: 169851, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185165

RESUMEN

The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.


Asunto(s)
Metales de Tierras Raras , Micromonospora , Contaminantes Químicos del Agua , Fósforo , Biomineralización , Minerales , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
4.
Nat Commun ; 15(1): 5730, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977695

RESUMEN

The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.


Asunto(s)
Inflamasomas , Infecciones por Klebsiella , Klebsiella pneumoniae , Ratones Endogámicos C57BL , Piroptosis , Proteína de Unión al GTP cdc42 , Animales , Piroptosis/genética , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/metabolismo , Ratones , Inflamasomas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Humanos , Inmunidad Innata , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas Adaptadoras de Señalización CARD
5.
Precis Clin Med ; 6(4): pbad031, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38163004

RESUMEN

Inflammatory bowel diseases (IBD) are a group of chronic relapsing gastrointestinal inflammatory diseases with significant global incidence. Although the pathomechanism of IBD has been extensively investigated, several aspects of its pathogenesis remain unclear. Long non-coding RNAs (lncRNAs) are transcripts with more than 200 nucleotides in length that have potential protein-coding functions. LncRNAs play important roles in biological processes such as epigenetic modification, transcriptional regulation and post-transcriptional regulation. In this review, we summarize recent advances in research on IBD-related lncRNAs from the perspective of the overall intestinal microenvironment, as well as their potential roles as immune regulators, diagnostic biomarkers and therapeutic targets or agents for IBD.

6.
J Agric Food Chem ; 71(51): 20585-20601, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38101321

RESUMEN

Soil salinity is an important limiting factor in agricultural production. Rhizospheric fungi can potentially enhance crop salinity tolerance, but the precise role of signaling substances is still to be systematically elucidated. A rhizospheric fungus identified as Paecilomyces vaniformisi was found to enhance the salinity tolerance of rice seedlings. In this study, a novel polysaccharide (PPL2b) was isolated from P. vaniformisi and identified as consisting of Manp, Glcp, GalpA, and Galp. In a further study, PPL2b showed significant activity in alleviating salinity stress-induced growth inhibition in rice seedlings. The results indicated that under salinity stress, PPL2b enhances seed germination, plant growth (height and biomass), and biochemical parameters (soluble sugar and protein contents). Additionally, PPL2b regulates genes such as SOS1 and SKOR to decrease K+ efflux and increase Na+ efflux. PPL2b increased the expression and activity of genes related to antioxidant enzymes and nonenzyme substances in salinity-induced oxidative stress. Further study indicated that PPL2b plays a crucial role in regulating osmotic substances, such as proline and betaine, in maintaining the osmotic balance. It also modulates plant hormones to promote rice seedling growth and enhance their tolerance to soil salinity. The variables interacted and were divided into two groups (PC1 77.39% and PC2 18.77%) based on their relative values. Therefore, these findings indicate that PPL2b from P. vaniformisi can alleviate the inhibitory effects of salinity stress on root development, osmotic adjustment, ion balance, oxidative stress balance, and growth of rice seedlings. Furthermore, it suggests that polysaccharides produced by rhizospheric fungi could be utilized to enhance crop tolerance to salinity.


Asunto(s)
Oryza , Paecilomyces , Plantones , Oryza/metabolismo , Salinidad , Polisacáridos/metabolismo , Suelo/química , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA